algèbre linéaire

En algèbre linéaire, une matrice triangulaire est une matrice carrée dont tous les coefficients sont nuls d’un côté ou de l’autre de la diagonale principale. C’est en particulier le cas si la matrice est diagonale. Une matrice est triangulaire stricte si elle est triangulaire et que tous ses coefficients diagonaux sont nuls.

Une matrice triangulaire supérieure

Remarque préliminaire

[modifier | modifier le code]

Dans ce qui suit, on considérera un anneau unitaire R non forcément commutatif, des R-modules à gauche et des R-modules à droite. Le lecteur qui n'est pas familier avec les anneaux non commutatifs et les modules à gauche ou à droite peut supposer que l'anneau R est commutatif et ne pas lire les passages où l'hypothèse contraire est faite. Si l'anneau R est commutatif, les R-modules à gauche et les R-modules à droite coïncident et sont simplement les R-modules. De même, le lecteur qui n'est pas familier avec les modules peut supposer que R est un corps et ne pas lire les passages où l'hypothèse contraire est faite. Si R est un corps, les R-modules à gauche (resp. à droite) sont les R-espaces vectoriels à gauche (resp. à droite). Enfin, si le lecteur n'est pas familier avec les corps non commutatifs et les espaces vectoriels à gauche et à droite, il peut supposer que R est un corps commutatif et ne pas lire les passages où des hypothèses contraires sont faites. Si R est un corps commutatif, les R-modules à gauche et à droite coïncident avec les R-espaces vectoriels.

Matrices triangulaires supérieures

[modifier | modifier le code]

Soit R un anneau unitaire. Par définition, une matrice triangulaire supérieure à coefficients dans R est une matrice carrée à coefficients dans R dont les valeurs sous la diagonale principale sont nulles :

A est triangulaire supérieure si et seulement si :

Matrices triangulaires inférieures

[modifier | modifier le code]

Soit R un anneau unitaire. Par définition, une matrice triangulaire inférieure à coefficients dans R est une matrice carrée à coefficients dans R dont les valeurs au-dessus de la diagonale principale sont nulles :

A est triangulaire inférieure si et seulement si :

Propriétés des matrices triangulaires

[modifier | modifier le code]

Notes et références

[modifier | modifier le code]
  1. Si R est commutatif, c'est un cas particulier du théorème de Cayley-Hamilton. Mais on peut le démontrer bien plus élémentairement, et pour R quelconque, comme dans cet exercice corrigé de la leçon « Matrice » sur Wikiversité.
  2. (en) Gene H. Golub et Charles F. Van Loan, Matrix Computations, Johns Hopkins University Press, , 3e éd., 694 p. (ISBN 978-0-8018-5414-9, lire en ligne), p. 318, Problem P7.1.1.
  3. (en) Yousef Saad, Iterative Methods for Sparse Linear Systems : Second Edition, SIAM, , 2e éd., 528 p. (ISBN 978-0-89871-534-7, lire en ligne), p. 20.
  4. La multiplication des matrices à gauche ou à droite par des scalaires munit le groupe additif Mn(R) d'une structure de R-module à gauche ou à droite (ces deux structures coïncident si l'anneau R est commutatif).
  5. N. Bourbaki, Algèbre, I, Chapitres 1 à 3, Paris, , III.12.
  6. Voir par exemple Bourbaki 1970, p. II.152.
  7. Ce contre-exemple est une solution de Bourbaki 1970, § 10, exerc. 2, b, p. II.205.
  8. Voir par exemple Bourbaki 1970, p. II.150.

Articles connexes

[modifier | modifier le code]

Théorème de Lie-Kolchin