Due sottoinsiemi del piano: uno connesso (in verde), l'altro non connesso (in viola) costituito da 4 componenti connesse

In matematica uno spazio topologico si dice connesso se non può essere rappresentato come l'unione di due o più insiemi aperti non vuoti e disgiunti. In maniera poco formale ma abbastanza intuitiva, possiamo dire che la connessione è la proprietà topologica di un insieme di essere formato da un solo "pezzo". Un sottoinsieme di uno spazio topologico si dice connesso se è uno spazio connesso con la topologia di sottospazio.

La connessione è uno dei principali invarianti usati per distinguere e classificare gli spazi topologici.

I sottospazi connessi massimali di uno spazio topologico X sono le componenti connesse di X. In altre parole, le componenti connesse possono essere viste come i "pezzi" da cui è formato X.

Definizione

[modifica | modifica wikitesto]

Uno spazio topologico X si dice sconnesso o disconnesso se è l'unione di due aperti non vuoti disgiunti. Altrimenti X si dice connesso.

Esistono altre definizioni equivalenti a questa:

Un sottoinsieme di uno spazio topologico è connesso se e solo se è connesso con la topologia di sottospazio.[1]

Componenti connesse

[modifica | modifica wikitesto]

Le componenti connesse di uno spazio topologico sono i sottoinsiemi connessi massimali (rispetto all'inclusione). In altre parole, sono i sottoinsiemi di X connessi più grandi, ovvero i vari pezzi da cui X è formato. Se lo spazio X è connesso, esisterà una sola componente che coincide con X stesso. Se non lo è, le componenti connesse saranno due o più.

Le componenti connesse di uno spazio topologico ne formano una partizione: sono disgiunte, non vuote e la loro unione forma l'intero spazio. In generale, le componenti di uno spazio topologico non sono aperte; lo sono solo se ogni punto ammette un intorno connesso

Fissato un punto x nello spazio topologico, l'unione di tutti i connessi contenenti x è la componente connessa contenente x.[2]

Spazi totalmente disconnessi

[modifica | modifica wikitesto]

Uno spazio topologico X è disconnesso (o sconnesso) se non è connesso. Tra questi, quelli le cui componenti connesse sono tutti e soli i punti di X sono detti spazi totalmente disconnessi.

Esempi

[modifica | modifica wikitesto]

Connessione per cammini (o per archi)

[modifica | modifica wikitesto]
Questo sottospazio di R² è connesso per cammini, perché un cammino può essere tracciato tra due punti qualsiasi nello spazio

Uno spazio topologico X è connesso per archi[3] (o con terminologia equivalente, connesso per cammini) se per ogni coppia di punti x e y dello spazio esiste un arco che li collega.

Più formalmente, uno spazio X è connesso per archi (o per cammini) se comunque scelta una coppia di punti x,y in X, esiste una funzione continua tale che e .[1]

Componenti connesse per cammini

[modifica | modifica wikitesto]

Una componente del cammino di uno spazio topologico X è l'insieme di tutti i punti che possono essere connessi con un arco tra di loro. Formalmente, se definiamo la relazione d'equivalenza x equivalente a y se esiste un cammino da x a y, le componenti connesse per cammini sono le classi d'equivalenza di questa relazione.

Quindi, uno spazio X è connesso per archi se è formato da un'unica componente connessa per cammini. Se le componenti sono più di una, lo spazio non è connesso per archi.[4]

Rapporto tra connessione per cammini e connessione

[modifica | modifica wikitesto]
Il seno del topologo è formato dal grafico della funzione e da un segmento verticale. Come sottospazio di è connesso ma non connesso per archi

Ogni spazio connesso per cammini è connesso. L'inverso non è sempre vero: esistono spazi connessi ma non connessi per archi.[1]

Un esempio è dato dal sottospazio di conosciuto come seno del topologo, e definito da

che è l'unione di un segmento verticale e di un "serpente" di lunghezza infinita che gli si avvicina oscillando sempre di più come illustrato in figura.

Per classi di spazi topologici che siano "sufficientemente regolari", le due nozioni coincidono. Ad esempio, i sottoinsiemi dei numeri reali R sono connessi se e solo se sono connessi per archi; questi sottoinsiemi sono gli intervalli di R.

Più in generale, gli insieme aperti di uno spazio euclideo (es: Rn o Cn) sono connessi se e solo se sono connessi per cammini.[4]

Inoltre, la connessione e la connessione per cammini sono la stessa cosa per gli spazi topologici finiti.

Connessione locale

[modifica | modifica wikitesto]

Uno spazio localmente connesso è uno spazio che è connesso "nel piccolo": ogni punto dello spazio ha cioè un sistema di intorni connessi. La definizione di spazio localmente connesso per archi è analoga.[4]

La locale connessione è normalmente una proprietà minima di regolarità locale che viene richiesta affinché siano validi dei teoremi molto generali. Ad esempio, è spesso richiesta nella teoria dei rivestimenti.

Proprietà

[modifica | modifica wikitesto]

Connessioni di ordine superiore

[modifica | modifica wikitesto]

La connessione per archi può essere vista come la "connessione di ordine 0", in un contesto più generale di "connessione di ordine n", che intuitivamente misura la presenza di "buchi n-dimensionali" nello spazio topologico. Tra queste, la più usata è la connessione di ordine 1, o semplice connessione: questo concetto fondamentale in topologia risulta particolarmente utile anche in analisi, per verificare ad esempio l'esattezza di una forma differenziale definita su un aperto del piano o dello spazio.

Note

[modifica | modifica wikitesto]
  1. ^ a b c M. Manetti, par. 4.1.
  2. ^ M. Manetti, par. 4.2.
  3. ^ In inglese path-connected
  4. ^ a b c M. Manetti, par 10.1.

Bibliografia

[modifica | modifica wikitesto]
Controllo di autoritàGND (DE4151264-9
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica