Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (mars 2018). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes.

En mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff[1], elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch.

L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel. Cependant la dimension de Hausdorff d'un espace métrique quelconque peut ne pas être un entier naturel.

Comment estimer la dimension de Hausdorff de la côte de la Grande-Bretagne

Introduction informelle

[modifier | modifier le code]

Dans un espace euclidien de dimension d, une boule de rayon r a un volume proportionnel à . Intuitivement, on s'attend donc à ce que le nombre de boules de rayon r nécessaires pour recouvrir une boule de rayon unité soit de l'ordre de .

On généralise cette notion à un espace métrique compact X quelconque de la façon suivante. Posons le nombre minimal de boules ouvertes de rayon r nécessaires pour recouvrir X. Si, lorsque r tend vers 0, croît comme , l'espace X est dit de dimension d. Plus précisément, d est le nombre réel tel que lorsque r tend vers 0, tend vers 0 pour tout réel , et vers pour tout réel .

Définitions

[modifier | modifier le code]

Malheureusement, les limites des quantités N(r)rs introduites dans le paragraphe précédent n'existent pas toujours. On peut contourner cette difficulté en procédant de la façon suivante :

La mesure de Hausdorff de X pour cette dimension, , seule à n'être éventuellement ni nulle, ni infinie, est souvent notée simplement et appelée mesure de Hausdorff de X sans autre précision ; pour des sous-ensembles « assez simples » de , elle est proportionnelle à la mesure de Lebesgue.

Propriétés

[modifier | modifier le code]

Calcul pratique dans un cas particulier classique

[modifier | modifier le code]

Soit une partie d’un espace vectoriel réel qui vérifie la propriété suivante :

« Il existe similitudes de rapports telles que soient disjoints deux à deux et que leur union soit isométrique à . »

On a alors la relation :

,

est la dimension de .

Cela découle de la propriété suivante des mesures de Hausdorff :

« Pour tout λ positif, . »

et de l'invariance par isométrie.

Cela offre un moyen simple de calculer les dimensions de fractales classiques, telles le flocon de Koch, le tapis de Sierpinski, etc.

Exemples

L'ensemble de Cantor.
L'ensemble de Cantor asymétrique.

Exemples

[modifier | modifier le code]
Triangle de Sierpinski, de dimension de Hausdorff ..

Notes et références

[modifier | modifier le code]
  1. (de) Felix Hausdorff, « Dimension und äusseres Mass », Math. Ann., vol 79, 1919, p. 157-179 [lire en ligne].
  2. a et b (en) I. G. Koshevnikova, « Hausdorff dimension », dans Michiel Hazewinkel, Encyclopædia of Mathematics, Springer, (ISBN 978-1556080104, lire en ligne) .
  3. (en) Mitsuhiro Shishikura, « The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets », Ann. of Math., vol. 147, 1998, p. 225-267 (publication originale de 1991 Stony Brook IMS Preprint, arXiv:math.DS/9201282).

Annexes

[modifier | modifier le code]

Sur les autres projets Wikimedia :

Bibliographie

[modifier | modifier le code]

(en) Dierk Schleicher, « Hausdorff dimension, its properties and its surprises », Amer. Math. Monthly, vol. 114, juin-juillet 2007, p. 509-528. « math/0505099 », texte en accès libre, sur arXiv.

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]