Une fonction réelle est k-lipschitzienne si le double cône blanc peut se déplacer le long de son graphe sans que jamais la courbe de la fonction ne passe à l'intérieur. Plus la constante de Lipschitz est petite, plus le cône blanc s'élargit et moins la fonction peut être abrupte.

En analyse mathématique, une application lipschitzienne (du nom de Rudolf Lipschitz) est une application possédant une certaine propriété de régularité qui est plus forte que la continuité. Intuitivement, c'est une fonction qui est limitée dans sa manière d'évoluer. Tout segment reliant deux points du graphe d'une telle fonction aura une pente inférieure, en valeur absolue, à une constante appelée constante de Lipschitz.

Les fonctions lipschitziennes sont un cas particulier de fonctions höldériennes.

Définitions

[modifier | modifier le code]

Cas réel

[modifier | modifier le code]

Soient E une partie de ℝ, une application et k un réel positif.

On dit que f est k-lipschitzienne si

Cas des espaces métriques

[modifier | modifier le code]

Soient et des espaces métriques, une application et k un réel positif.

On dit que f est k-lipschitzienne si[1]

De plus

[modifier | modifier le code]

Propriétés

[modifier | modifier le code]

Caractérisation parmi les fonctions dérivables

[modifier | modifier le code]

Une fonction f dérivable sur un intervalle réel est lipschitzienne si et seulement si sa dérivée est bornée[4].

Corollaires
  • Toute fonction réelle continûment dérivable sur un intervalle réel fermé borné est lipschitzienne[4].
  • Par conséquent, toute fonction continûment dérivable sur un intervalle est localement lipschitzienne.

Quelques propriétés

[modifier | modifier le code]

étant (k+ε)-lipschitzienne pour tout ε, il en découle le fait que f est k-lipschitzienne.

Exemples

[modifier | modifier le code]

Notes et références

[modifier | modifier le code]
  1. a et b Stéphane Balac et Laurent Chupin, Analyse et algèbre : cours de mathématiques de deuxième année avec exercices corrigés et illustrations avec Maple, Lausanne, PPUR, (lire en ligne), p. 558.
  2. Alain Yger et Jacques-Arthur Weil, Mathématiques appliquées L3 : Cours complet avec 500 tests et exercices corrigés, Paris, Pearson, (lire en ligne), p. 141.
  3. (en) « fractals and self similarity, p.716 », sur université de l'Indiana
  4. a b et c Pour une démonstration, voir par exemple cette section de la leçon « Fonctions d'une variable réelle » sur Wikiversité.
  5. Jean Dieudonné, Éléments d'analyse, t. I : Fondements de l'analyse moderne, Paris, Gauthier-Villars, (ISBN 978-2-04-010410-8, OCLC 489875029), p. 79.

Articles connexes

[modifier | modifier le code]