As referências deste artigo necessitam de formatação. Por favor, utilize fontes apropriadas contendo título, autor e data para que o verbete permaneça verificável. (Setembro de 2022)
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Janeiro de 2011)
Exemplo de raiz quadrada

Em matemática, a raiz quadrada de é um número que, multiplicado por si próprio, iguala-se a .[1] Todo número real não negativo possui uma única raiz quadrada não negativa, chamada de raiz quadrada principal, a qual é denotada pelo símbolo . Por exemplo, 3 é a raiz quadrada de 9, ou seja, , pois .

Embora , este valor não deve ser considerado como raiz porque o seu símbolo não significa "raiz quadrada", mas sim a raiz quadrada não negativa. Esta é a razão de ser obrigatório o sinal de na frente do símbolo da Fórmula de Bháskara, utilizada na resolução de equações quadráticas (equações do 2º grau).


A extensão da função raiz quadrada a números negativos leva à criação dos números imaginários e ao corpo dos números complexos. O primeiro uso do atual símbolo da raiz quadrada remonta ao século XVI. Pensa-se que a sua origem está na letra r minúscula, primeira letra de radix (do latim, raiz). Pode também ser uma operação geométrica - a partir de um segmento de reta dado determinar um outro cujo comprimento seja igual à raiz quadrada do inicial.[2]

Propriedades

As seguintes propriedades da função raiz quadrada são válidas para todos os números reais positivos x e y:








  1. , logo

  2. sempre que , portanto

A aplicação da função raiz quadrada a um número racional dá em geral origem a um número algébrico; é racional se e somente se x puder ser representado por uma razão entre dois quadrados perfeitos. Por exemplo, é irracional (ver artigo raiz quadrada de dois).

Geometricamente, a função raiz quadrada transforma a área de um quadrado no comprimento do seu lado.

Admita-se que x e a são reais, e que , e que se quer determinar x. Um erro frequente é aplicar a função raiz quadrada e concluir que . Tal não é verdade uma vez que a raiz quadrada de x2 não é x, mas sim o seu valor absoluto |x| (uma das propriedades acima mencionadas). Portanto, apenas se pode concluir que ou, de outra forma, que

Quando se pretende provar que a função raiz quadrada é contínua ou diferenciável, ou no cálculo de certos limites, a seguinte propriedade é de grande utilidade:

O mesmo é válido para quaisquer x e y não negativos, sendo pelo menos um deles diferente de zero.

A função tem o seguinte gráfico:

A função, cujo domínio é o conjunto dos números reais não negativos é contínua, monótona e diferenciável para todo o x positivo. (não é diferenciável para x = 0 uma vez que o declive da tangente à curva nesse ponto é +∞. A sua derivada é dada por

As séries de Taylor para x = 1 podem ser encontradas usando o teorema binomial:

para .

Meios de calcular a raiz quadrada

As dificuldades de computar raízes quadradas usando-se números romanos e a notação romana para frações levou Vitrúvio a declarar que extrair a raiz quadrada de 200 não pode ser feito por números [3].

Método Brasileiro

Em 2023, uma estudante brasileira de 11 anos descobriu uma maneira bem simples e didática de se descobrir uma raiz quadrada exata.[4] Esse método foi publicado em uma revista científica, após seu professor de matemática verificar que a fórmula realmente funcionava.[4]

A fórmula, de maneira didática e simplificada, é: (r x r) + r + (r+1), onde r+1 vai ser o número que você quer.

Exemplo: Qual a raiz de 144? Digamos que você saiba que a raiz quadrada de 100 é 10.

Então partiremos de r = 10.

(r x r) + r + (r+1) = 10 x 10 + 10 + 11 = 121. Ainda não encontrei. Vamos seguir com a conta. Agora com r = 11.

(r x r) + r + (r+1) = 11 x 11 + 11 + 12 = 144. Então a raiz de 144 é 12.

Calculadoras

As calculadoras portáteis tipicamente implementam boas rotinas, tais como o método de Newton (frequentemente com uma estimativa inicial igual a 1), para computar a raiz quadrada de um número real positivo.[5][6] Ao computar raízes quadradas com tábuas de logaritmos ou réguas de cálculo, pode-se explorar a identidade

Calculando a raiz quadrada manualmente

Por exemplo, calcularemos a raiz quadrada de 2.

√2|1,41... -1 |2 4|28 1 100| 4| 1 -96 | 400 -281

Seguindo estes passos irás conseguir sem um professor:

Método babilônico

Um algoritmo frequentemente usado para aproximar é conhecido como "método babilônico" (porque, especula-se, este era o método usado na Matemática Babilônica para calcular a raiz quadrada,[7] e é o mesmo obtido ao aplicar-se o Método de Newton à equação Para se encontrar a raiz quadrada de um número real n, processa-se como a seguir:

  1. Inicie com um número positivo arbitrário r (preferencialmente próximo da raiz);
  2. Substitua r pela média de r e ;
  3. Repita o segundo passo para obter uma aproximação melhor.

Este algoritmo é quadraticamente convergente, que significa que o número de dígitos corretos de r dobra a cada repetição. Ele, entretanto, não dá a raiz exata, mas dá uma ótima aproximação. Ou seja não é um método perfeito, apresenta uma margem de erro (muito pequena, desprezível para cálculos que não necessitam de muita precisão. De fato, dependendo da aproximação todas as casas decimais estarão corretas). Abaixo, um exemplo do método para melhor compreensão:

Digamos que se queira extrair a raiz quadrada de 66.

  1. Ache o menor quadrado perfeito que mais se aproxima do número dado. Nesse caso o quadrado que mais se aproxima é 64. Nota: Usa-se sempre o quadrado menor que o número procurado, mesmo que o quadrado maior seja mais próximo.
  2. Extraia a raiz quadrada do quadrado que mais se aproximou. A raiz quadrada de 64 é 8. Nesse exemplo chamaremos 8 como A (A = 8).
  3. Divida o número original por A, ou seja, 66 / 8 = 8,2. Nesse exemplo chamaremos 8,2 como B (B = 8,2).
  4. Somamos A com B e dividimos por 2.
    8 + 8,2 = 16,2
    16,2 / 2 = 8,1
    O resultado chamaremos de C (C = 8,1).
  5. Agora dividimos o número original (nesse caso 66) por C.
    66 / 8,1 = 8,148
    O resultado chamaremos de D (D = 8,148).
  6. Novamente, usando do mesmo procedimento, somaremos C e D e dividimos por 2.
    8,1 + 8,148 = 16,248
    16,248 / 2 = 8,124
    Esse número chamaremos de E (E = 8,124).

Esse seria aproximadamente a raiz quadrada de 66. Poderíamos dividir o 66 por E e continuar esse mesmo processo, só que isso acabaria por dar algumas imprecisões. Então podemos dizer que a raiz quadrada de 66 é aproximadamente 8,124. Ao testarmos numa calculadora teremos: 8,12403840463596... Ou seja, esse é um bom método para se achar aproximadamente uma raiz quadrada.

Um algoritmo exato semelhante ao da divisão longa

Este método, apesar de muito mais lento que o método Babilônico, tem a vantagem de ser exato: dado um número que tem uma raiz quadrada cuja representação decimal termina, então o algoritmo termina e produz a raiz quadrada correta após um número finito de passos. Ele pode ser usado, portanto, para checar se um dado número é um quadrado perfeito.

Escreva o número em decimal e divida-o em pares de dígitos, começando do ponto. Os números são colocados de uma maneira similar ao algoritmo de divisão longa e a raiz quadrada final aparecerá acima do número original.

Para cada iteração: Traga para baixo o par o mais significativo dos dígitos ainda não usados e adicione-os a todo o restante. Este é o valor atual consultado em etapas 2 e 3. Se r denotar a parte do resultado encontrado assim distante, determine o maior digito x que não faz y = x(20r + x) para exceder o valor atual. Coloque o dígito novo x na linha do quociente. Subtraia y do valor atual para dar forma a um restante novo. Se o restante for zero e não houver mais dígito para trazer para baixo o algoritmo terminou. Se não continue com etapa 1. Exemplo: Que é a raiz quadrada de 152,2756?

       ____1__2._3__4_
       |  01 52.27 56                        1
x         01                   1*1=1         1
         ____                                __
          00 52                              22
2x        00 44                22*2=44        2
         _______                             ___
             08 27                           243
24x          07 29             243*3=729       3
            _______                          ____
                98 56                        2464
246x            98 56          2464*4=9856      4
               _______
                00 00          O algoritmo termina:  a resposta é 12,34

Embora demonstrado aqui para números da base 10, o procedimento trabalha para algumas bases, incluindo a base 2. Na descrição acima, 20 meios dobram a base de número usada, no exemplo de binário isto seriam realmente 100. que o algoritmo está no fato muito mais fácil de executar na base 2, como em cada etapa somente os dois dígitos 0 e 1 têm que ser testados.

Equação de Pell

A equação de Pell permite encontrar a parte inteira de uma raiz quadrada simplesmente subtraindo inteiros ímpares. Por exemplo, para calcular a parte inteira da raiz quadrada de 19, calcula-se a sequência:

   1. 19 – 1 = 18
   2. 18 – 3 = 15
   3. 15 – 5 = 10
   4. 10 – 7 = 3

Como 3 é menor que 9, a sequência para aqui. Como 4 subtrações foram efetuadas, então a resposta é 4

Ou seja, para calcular a parte inteira da raiz quadrada n de um número inteiro positivo m, pode ser usado o seguinte trecho de programa:

   n = 0
   i = 1
   while (m >= i){
      m = m – i;
      i = i + 2;
      n = n + 1;
   }

Observe-se que se n é a raiz exata, o valor final de m é zero.

Encontrando raízes quadradas usando aritmética mental

A Equação de Pell é um método para obter a raiz quadrada simplesmente subtraindo números ímpares.

Ex: Para obter nós começamos com a seguinte sequência:

5 passos foram tomados e isso nos leva que a parte inteira da raiz quadrada de 27 é 5.

Efetua-se: resultado do último passo * 100 e número de passos da sequência anterior * 20 + 1

e

O próximo número é 1.

Em seguida efetua-se: resultado do último passo * 100 e ((número de passos da primeira sequência * 10) + (número de passos da segunda sequência)) * 20 + 1

e

O próximo número é 9.

O resultado nos dá 5.19 com uma aproximação da raiz quadrada de 27.

Método das Frações Continuadas

Irracionais Quadráticos, que são os números envolvendo raízes quadradas na forma (a+√b)/c, são compostos por períodos de frações continuadas. Isto faz com que elas sejam fáceis de serem calculadas recursivamente, dado o período. Por exemplo, para calcular √2, nós temos que usar o fato de que √2-1 = [0;2,2,2,2,2,...], e usar a relação recursiva: an+1=1/(2+an) com a0=0 para obter √2-1 dada uma precisão especificada por n níveis de recursividade, e adicionar 1 ao resultado para obter √2.

Raiz quadrada de números complexos

Para todo número complexo z não-nulo existem exatamente dois números w tais que w² = z. A definição usual de √z é como segue: se z = r exp(iφ) é representado em coordenadas polares com -π < φ ≤ π, então fazemos √z = √r exp(iφ/2). Isto definido, a função raiz quadrada é holomórfica em todo ponto exceto nos números não-positivos reais (onde ela não é nem contínua). A série de Taylor acima para √(1+x) continua válida para números complexos x com |x| < 1.

Quando o número complexo está na forma retangular, a seguinte fórmula pode ser usada:

onde o sinal da parte imaginária da raiz é o mesmo que o sinal da parte imaginária do número original.

Perceba que, por causa da natureza descontínua da função raiz quadrada no plano complexo, a regra é em geral falsa. Se for tomada erroneamente como verdadeira, esta regra pode levar a numerosas "provas" erradas, como por exemplo a seguinte prova real que mostra que -1 = 1:[8]

A terceira igualdade não pode ser justificada.

Porém, a regra pode estar errada apenas até um fator -1, é verdadeiro para ambos ± tanto + como - (mas não ambos ao mesmo tempo). Perceba que portanto e finalmente com o uso de = e

Raízes quadradas de matrizes e operadores

Se A é uma matriz positiva definida (ou um operador positivo definido), então existe exatamente uma matriz positiva definida (idem para operador) B tal que B² = A; definimos

Mais genericamente, para cada matriz ou operador normal A existem operadores normais B tais que B² = A. Em geral, há vários operadores B para cada A e a função raiz quadrada não pode ser definida para operadores normais de uma maneira satisfatória.

Raiz quadrada dos números naturais, de 0 à 30

Referências

  1. Square Root
  2. Construções geométricas rigorosas
  3. Vitrúvio, Sobre Arquitetura, Livro IX, Introdução, 4 [em linha]
  4. a b g1.globo.com/ Aluna de 11 anos ajuda a desenvolver fórmula para descobrir raiz quadrada de uma nova maneira
  5. Parkhurst, David F. (2006). Introduction to Applied Mathematics for Environmental Science. [S.l.]: Springer. 241 páginas. ISBN 9780387342283 
  6. Solow, Anita E. (1993). Learning by Discovery: A Lab Manual for Calculus. [S.l.]: Cambridge University Press. 48 páginas. ISBN 9780883850831 
  7. Fowler, David; Eleanor Robson (1998). «Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context» (PDF). Historia Mathematica. 25 (4): 366-378. Arquivado do original (PDF) em 3 de setembro de 2006  )
  8. José Carlos Magossi (2023). «Raiz quadrada: complexa ou real?». Professor de Matemática Online. 11 (3). ISSN 2319-023X. doi:10.21711/2319023x2023/pmo1125 

Ligações externas