En théorie des groupes, les groupes nilpotents forment une certaine classe de groupes contenue dans celle des groupes résolubles et contenant celle des groupes abéliens. Les groupes nilpotents apparaissent dans la théorie de Galois et dans la classification des groupes de Lie ou des groupes algébriques linéaires.

Définition

[modifier | modifier le code]

Soit G un groupe noté multiplicativement, d'élément neutre e. Si A et B sont deux sous-groupes de G, on note [A,B] le sous-groupe engendré par les commutateurs de la forme [x,y] pour x dans A et y dans B.

On définit alors par récurrence une suite de sous-groupes de G, notés Cn(G), par : C1(G) = G et Cn + 1(G) = [G, Cn(G)].

Cette suite — qu'on note aussi[1]n(G))n — est appelée la suite centrale descendante de G[2]. On dit que G est nilpotent s'il existe un entier n tel que Cn(G) = { e }. En outre, si G est un groupe nilpotent, sa classe de nilpotence est le plus petit entier n tel que Cn + 1(G) = { e }.

On peut également définir la nilpotence à l'aide de la suite centrale (en) ascendanten(G))n de G, définie par récurrence de la façon suivante : ζ0(G) = { e } et ζn+1(G) est le sous-groupe de G formé par les éléments x de G tels que, pour tout élément g de G, [g, x] appartienne à ζn(G). Cette suite est également la suite de sous-groupes normaux de G définie comme suit : ζ0(G) = { e } et, pour tout n, ζn+1(G) est le seul sous-groupe de G contenant ζn(G) et tel que ζn+1(G)/ζn(G) soit le centre de G/ζn(G). (Par exemple, ζ1(G) est le centre de G.) On prouve[3] que G est nilpotent si et seulement si sa suite centrale ascendante atteint G et que, dans ce cas, la classe de nilpotence de G est le plus petit nombre naturel n tel que ζn(G) = G.

Exemples

[modifier | modifier le code]

Propriétés

[modifier | modifier le code]
  1. G est nilpotent ;
  2. tout sous-groupe de G est sous-normal dans G, c'est-à-dire que si H est un sous-groupe de G, il existe une séquence finie croissante de sous-groupes allant de H à G telle que chacun de ces sous-groupes soit normal dans le suivant ;
  3. tout sous-groupe propre de G est sous-groupe propre de son normalisateur dans G ;
  4. tout sous-groupe maximal de G est normal dans G ;
  5. G est produit direct de ses sous-groupes de Sylow ;
  6. G est un produit direct de groupes dont les ordres sont des puissances de nombres premiers ;
  7. pour tout nombre premier p, G est p-clos (anglais p-closed), c'est-à-dire que les éléments de G dont l'ordre est puissance de p forment un sous-groupe de G, ou encore que G admet un p-sous-groupe de Sylow normal (qui est alors l'unique p-sous-groupe de Sylow de G) ;
  8. G vérifie une « réciproque » forte du théorème de Lagrange : pour tout diviseur d de |G|, G possède un sous-groupe normal d'ordre d[20].
  1. G est nilpotent ;
  2. tout sous-groupe de G est sous-normal dans G, c'est-à-dire que si H est un sous-groupe de G, il existe une séquence finie croissante de sous-groupes allant de H à G telle que chacun de ces sous-groupes soit normal dans le suivant ;
  3. tout sous-groupe propre de G est sous-groupe propre de son normalisateur dans G ;
  4. tout sous-groupe maximal de G est normal dans G.

Groupes nilpotents de classe ≤ 2

[modifier | modifier le code]

Un groupe G est nilpotent de classe ≤ 2 si et seulement si le dérivé de G est contenu dans le centre de G, ce qui revient à dire que pour tous éléments x, y de G, le commutateur [x, y] = x-1y-1xy appartient au centre de G. Avec la notation az = z-1az pour a et z dans G, G est nilpotent de classe ≤ 2 si et seulement si [x, y]z = [x, y] pour tous éléments x, y, z de G. Soit G un groupe nilpotent de classe ≤ 2. Les identités

et

vraies dans tout groupe, deviennent dans G

et

Donc si a est un élément de G, l'application fa : x ↦ [a, x] et l'application ga : x ↦ [x, a] sont des endomorphismes de G. On a donc

et

pour tous éléments x, y de G et tout entier rationnel r.

De ces relations et du fait que les commutateurs d'éléments de G appartiennent au centre de G, on déduit la relation

(1)

pour tous éléments x, y de G et tout entier naturel n. Cette formule peut être démontrée directement par récurrence sur n, ou encore déduite de l'identité suivante, vraie dans tout groupe :

La formule (1) sert par exemple dans la détermination de la structure des groupes hamiltoniens[22].

Notes et références

[modifier | modifier le code]
  1. Voir par exemple G. Endimioni, Une introduction aux groupes nilpotents : Cours de D.E.A., Université de Provence, Centre de Mathématiques et d'Informatique, 1996/1997 (lire en ligne), p. 3.
  2. N. Bourbaki, Algèbre, I, chap. 1, § 6, n° 3, p. I.68.
  3. Voir par exemple J. Calais, Éléments de théorie des groupes, Paris, 1984, p. 247, ou encore Endimioni 1996/1997, p. 3-4.
  4. Pour une démonstration, voir par exemple cet exercice corrigé sur Wikiversité, ou l'exercice 10.30 du chap. 10 de (en) Cornelia Druţu et Michael Kapovich, « Lectures on Geometric Group Theory », ou Jean Fresnel, Groupes, Paris, Hermann, 2001, exerc. 8.70, p. 135-136.
  5. Endimioni 1996/1997, p. 4-5, ou encore (en) D. J. S. Robinson (de), A Course in the Theory of Groups, Springer, , 2e éd. (lire en ligne), p. 127.
  6. Ce n'est pas forcément le cas d'un p-groupe infini. Voir Robinson 1996, p. 139.
  7. Rotman 1995, exerc. 5.41, p. 118.
  8. N. Bourbaki, Algèbre, Paris, , chap. 1, p. 71
  9. (en) Joseph J. Rotman (en), An Introduction to the Theory of Groups [détail des éditions], 4e éd., 1995, exerc. 5.36, p. 117.
  10. Robinson 1996, exerc. 5.1.9, p. 128.
  11. (en) Charles Leedham-Green (en) et Susan McKay, The Structure of Groups of Prime Power Order, OUP, (lire en ligne), cor. 3.3.4, (iii), p. 60-61.
  12. Endimioni 1996/1997, prop. 5.3
  13. Endimioni 1996/1997, prop. 6.1 et cor. 6.1
  14. Endimioni 1996/1997, prop. 5.4
  15. (de) B. Baer, « Engelsche Elemente Noetherscher Gruppen », Math. Ann., vol. 133,‎ , p. 256-270 (lire en ligne)
  16. (en) Gunnar Traustason, « Engel Groups », dans Groups St Andrews 2009 in Bath, coll. « Groups St Andrews, A series of conferences on group theory » (lire en ligne)
  17. Voir par exemple Robinson 1996, p. 132.
  18. Appliquer (en) John C. Lennox et Derek J. S. Robinson, The Theory of Infinite Soluble Groups, Clarendon Press, (ISBN 978-0-19-850728-4, lire en ligne), énoncé 1.2.14 (ii), p. 11, au sous-groupe de G engendré par x et y, sous-groupe qui est nilpotent de classe au plus c.
  19. Pour l'équivalence entre 1, 5, 6 et 7, voir par exemple Bourbaki 1970, ch. 1, § 6, n° 7, théorème 4 et remarque 2, p. I.76-I.77. Pour l'équivalence entre 1, 3, 4, 6 et 7, voir par exemple (en) John S. Rose, A Course on Group Theory, CUP, (lire en ligne), Theorem 11.3, p. 266-267. On a clairement 8 ⇒ 5, et la réciproque se déduit du fait que 8 est vrai pour les p-groupes finis.
  20. Voir (en) C. V. Holmes, « A characterization of finite nilpotent groups », Amer. Math. Monthly, vol. 73, no 10,‎ , p. 1113-1114 (zbMATH 0145.02903), et cet exercice corrigé du cours de théorie des groupes sur Wikiversité..
  21. Voir Robinson 1996, 5.2.4, p. 130, où la finitude de G n'est pas utilisée dans la démonstration des trois premières implications.
  22. Voir Robinson 1996, p. 143-145.

Voir aussi

[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]