En algèbre, la dimension homologique d'un anneau R diffère en général de sa dimension de Krull et se définit à partir des résolutions projectives ou injectives des R-modules. On définit également la dimension faible à partir des résolutions plates des R-modules. La dimension de Krull (respectivement homologique, faible) de R peut être vue comme une mesure de l'éloignement de cet anneau par rapport à la classe des anneaux artiniens (resp. semi-simples, réguliers au sens de von Neumann (en)), cette dimension étant nulle si, et seulement si R est artinien (resp. semi-simple, régulier au sens de von Neumann). Dans le cas d'un anneau commutatif noethérien R, ces trois dimensions coïncident si R est régulier, en particulier si sa dimension homologique est finie[1],[2].

Résolutions

Dimensions d'un module

Dimensions d'un anneau

Nous ne revenons pas ici sur la dimension de Krull.

Dimension homologique

On définit de même la dimension globale à droite de R, notée dans ce qui suit .

Dimension faible

Les quantités suivantes sont égales[9] :

Leur valeur commune est appelée la dimension globale faible de R, notée dans ce qui suit[10]. Cette quantité est la borne supérieure dans des quantités pour lesquelles il existe un R-module à droite et un module à gauche tels que (voir l'article Foncteur dérivé).

Propriétés

Anneaux réguliers

Notes et références

Notes

  1. McConnell et Robson 2001, 7.1.9 ; Lam 1999, (5.94), (5.95).
  2. La dimension de Goldie, également appelée dimension uniforme, qui a une signification tout à fait différente, n'est pas traitée ici. Voir par exemple McConnell et Robson 2001, §2.2.
  3. Rotman 2009, Prop. 6.2 et 6.4.
  4. Le de peut être la première lettre du mot anglais flat ou du mot français faible.
  5. a et b McConnell et Robson 2001, 7.1.8.
  6. C'est ce que Bourbaki 2007 (§8.3), qui ne considère que des modules à gauche, appelle la dimension homologique de l'anneau R, et note . Il ne définit pas la dimension homologique faible.
  7. McConnell et Robson 2001, 7.1.11. Notation anglaise: pour la dimension globale à gauche, pour la dimension globale à droite, pour la dimension globale.
  8. Mitchell 1965. Il n'est pas nécessaire de supposer que ait « suffisamment de projectifs » ou « suffisamment d'injectifs ».
  9. McConnell et Robson 2001, §7.1.
  10. Notation anglaise : .
  11. Bourbaki 2007, §8, Thm. 1.
  12. McConnell et Robson 2001, §7.4. Résultat semblable dans le cas non commutatif en introduisant la notion d'ensemble dénominateur.
  13. Rotman 2009, Example 8.20.
  14. Rotman 2009, §4.4.
  15. À ne pas confondre avec un anneau de von Neumann régulier.
  16. McConnell et Robson 2001, 7.7.1.
  17. Lam 1999, p. 201, exige, avec d'autres auteurs, que, de plus, R soit noethérien à gauche.
  18. Lam 1999, (5.94) ; Nagata 1962, Appendix.
  19. McConnell et Robson 2001, 7.7.3, 7.7.5. Des extensions au cas non commutatif des propriétés énoncées ici sont données dans ces références.
  20. Ceci n'est bien sûr exact que si l'on n'exige pas la propriété noethérienne dans la définition de la régularité.

Références