Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Consultez la liste des tâches à accomplir en page de discussion.

En mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes :

Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau.

Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente. Parfois on distingue les demi-anneaux et les demi-anneaux unifères : dans ce cas, la structure multiplicative n'est qu'un demi-groupe, donc ne possède pas nécessairement un élément neutre. En général, on demande aussi que . Un demi-anneau qui ne possède pas nécessairement un élément neutre pour sa multiplication est parfois appelé hémi-anneau (hemiring en anglais)[1].

Contrairement à ce qui se passe pour les anneaux, on ne peut démontrer que 0 est un élément absorbant à partir des autres axiomes.

Domaines d'application

Les demi-anneaux se retrouvent souvent en :

Exemples

Premiers exemples

et pour multiplication, élément zéro et élément unité [4].

Exemples généraux

Demi-anneau tropical

Article détaillé : Mathématiques tropicales.

Transfert de structure

Par transfert de structure :

Demi-anneau complet et continu

Un monoïde complet est un monoïde commutatif qui possède une opération de sommation infinie pour tout ensemble d'indices et tel que les propriétés suivantes sont vérifiées[6],[11],[12],[13] :

et

Un monoïde continu est un monoïde ordonné pour lequel tout ensemble ordonné filtrant a une borne supérieure qui de plus est compatible avec l'opération de monoïde :

Les deux concepts sont étroitement liés : un monoïde continu est complet, la somme infinie peut en effet être définie par :

où le "sup" est pris sur tous les sous-ensembles finis E de I et chaque sommation, dans le membre droit, porte donc sur un ensemble fini[13].

Un demi-anneau complet est un demi-anneau pour lequel le monoïde additif est un monoïde complet, et qui vérifie les lois de distributivité infinie suivantes[13],[6],[12] :

et .

Un exemple de demi-anneaux complet est l'ensemble des parties d'un monoïde pour l'union ; le demi-anneau des matrices à entrées dans un demi-anneau complet est lui-même un demi-anneau complet[14].

Un demi-anneau continu est un monoïde continu dont la multiplication respecte l'ordre et le bornes supérieures. Le demi-anneau N ∪ {∞} avec l'addition, la multiplication, et l'ordre naturel est une demi-anneau continu[15].

Tout demi-anneau continu est complet[13] et on peut inclure cette propriété dans la définition[14].

Demi-anneau étoilé

Un demi-anneau étoilé (en anglais star semiring ou starsemiring est un demi-anneau muni d'un opérateur unaire supplémentaire noté « * » satisfaisant[16],[6],[17],[18] :

Exemples de demi-anneaux étoilés:

.
Cette opération est la fermeture réflexive et transitive de la relation R[6].

Algèbre de Kleene

Une algèbre de Kleene est un demi-anneau étoilé avec une addition idempotente; elles interviennent en théorie des langages et dans les expressions régulières.

Demi-anneau de Conway

Un demi-anneau de Conway est un demi-anneau étoilé qui vérifie les équations suivantes entre l'opération étoile et l’addition et la multiplication[16],[19] :

Les trois premiers exemples ci-dessus sont aussi des demi-anneaux de Conway[6].

Demi-anneau itératif

Un demi-anneau itératif (en anglais iteration semiring) est un demi-anneau de Conway qui vérifie les axiomes de Conway des groupes[16] associés par John Conway aux groupes dans les demi-anneaux étoilés[20]

Demi-anneau étoilé complet

Un demi-anneau étoilé complet est un demi-anneau où l'étoile a les propriétés habituelles de l'étoile de Kleene ; on la définit à l'aide de l'opérateur de sommation infinie par[6] :

avec et pour .

Les demi-anneaux des relations binaires, des langages formels et des nombres réels non négatifs étendus sont étoilés complets[6].

Un demi-anneau étoilé complet est aussi un demi-anneau de Conway[21] mais la réciproque n'est pas vraie. Un exemple est fourni par les nombres rationnels non négatifs étendus avec l’addition et la multilication usuelles[6].

Notes et références

  1. Golan 1999, p. 1.
  2. Sakarovitch 2009, p. 28.
  3. Alexander E. Guterman, « Rank and determinant functions for matrices over semirings », dans Nicholas Young et Yemon Choi (éditeurs), Surveys in Contemporary Mathematics, Cambridge University Press, coll. « London Mathematical Society Lecture Note Series » (no 347), (ISBN 0-521-70564-9, zbMATH 1181.16042), p. 1–33.
  4. a et b Lothaire 2005, p. 211.
  5. a et b Claude Pair, « Sur des algorithmes pour des problèmes de cheminement dans les graphes finis », dans P. Rosentiehl, Théorie des graphes (journées internationales d'études) -- Theory of Graphs (internainal symposium), Dunod (Paris) et Gordon and Breach (New York),
  6. a b c d e f g h i j k l m et n Droste et Kuich 2009, p. 7-10.
  7. Berstel et Reutenauer 2011, p. 4.
  8. Jean-Éric Pin, « Tropical Semirings », dans J. Gunawardena, Idempotency (Bristol, 1994), Cambridge, Cambridge University Press, coll. « Publ. Newton Inst. 11 », 1998,, p. 50-69.
  9. Imre Simon, « Recognizable sets with multiplicities in the tropical semiring », dans Mathematical Foundations of Computer Science (Carlsbad, 1988), Springer, coll. « Lecture Notes in Computer Science » (no 324), (lire en ligne), p. 107–120.
  10. Mathoverflow, 2011, What's tropical about tropical algebra? sur Mathoverflow
  11. Udo Hebisch, « Eine algebraische Theorie unendlicher Summen mit Anwendungen auf Halbgruppen und Halbringe », Bayreuther Mathematische Schriften, vol. 40,‎ , p. 21–152 (zbMATH 0747.08005)
  12. a et b Werner Kuich, « ω-continuous semirings, algebraic systems and pushdown automata », dans Michael S. Paterson (éditeur), Automata, Languages and Programming (17th International Colloquium, Warwick University, England, July 16-20, 1990), Springer-Verlag, coll. « Lecture Notes in Computer Science » (no 443),‎ (ISBN 3-540-52826-1), p. 103–110
  13. a b c et d Kuich 2011.
  14. a et b Sakarovitch 2009, p. 471.
  15. Zoltán Ésik et Hans Leiß, « Greibach normal form in algebraically complete semirings », dans Julian Bradfield, Computer Science Logic (16th international workshop, CSL 2002, 11th annual conference of the EACSL, Edinburgh, Scotland, September 22-25, 2002), Berlin, Springer-Verlag, coll. « Lecture Notes in Computer Science » (no 2471), (zbMATH 1020.68056), p. 135–150.
  16. a b et c Ésik 2008.
  17. Daniel J. Lehmann, « Algebraic structures for transitive closure », Theoretical Computer Science, vol. 4, no 1,‎ , p. 59-76.
  18. Berstel et Reutenauer 2011, p. 27.
  19. Ésik et Kuich 2004.
  20. John H. Conway, Regular algebra and finite machines, Londres, Chapman and Hall, (ISBN 0-412-10620-5, zbMATH 0231.94041)
  21. Droste et Kuich 2009, Theorem 3.4 p. 15.

Bibliographie