Klasifikace eukaryot od přibližně 90. let 20. století prošla výraznou změnou a dosud není plně stabilní. Stále ve větší míře se prosazuje fylogenetický přístup, tedy snaha respektovat v klasifikačních systémech skutečnou příbuznost jednotlivých skupin, nikoliv pouze podobné znaky. Různé aktuální studie používají vzájemně odlišné klasifikační systémy, jen málokteré z nich si kladou za cíl pokrýt celkový rozsah eukaryotní domény. Níže uvedené systémy proto nejsou závazné, ale jsou uvedeny jako příklady dvou možných, ale přitom šířeji aplikovaných v mezinárodních projektech. Oba jsou zaměřeny zejména na jednobuněčná eukaryota (protista) a systémy pro klasické mnohobuněčné říše ponechávají na specializovaných projektech (třebaže nemusejí vzájemně navazovat, co se týká klasifikační úrovně a zahrnutí nepřirozených skupin a incertae sedis); podobně i na wikipedii se jimi zabývají samostatné články Klasifikace rostlin, Klasifikace hub a Klasifikace živočichů.

Podle prvního z nich, vytvořeného protistology v r. 2005 a aktualizovaného v r. 2012 a 2019, lze v rámci eukaryot vyčlenit několik velkých skupin (superskupin) bez taxonomického ranku, u kterých se předpokládá jejich monofyletičnost, a sice Amoebozoa, Opisthokonta, Archaeplastida, Sar a několik menších, jako CRuMs, Cryptista, Haptista, Discoba a Metamonada; ukazuje i jejich přiřazení ke dvěma superskupinám Amorphea a Diaphoretickes, taktéž považovaným za přirozené.

Druhý systém, zachovávající taxonomické úrovně, vytvořil a průběžně upravoval Thomas Cavalier-Smith, přičemž se snažil implementovat nové fylogenetické poznatky. Uvedená podoba má základ již v r. 1998, ale v aktuální podobě je takřka zcela tvořena novým zněním daným postupnými dílčími úpravami systému až k r. 2022. Dělí doménu eukaryota na pět říší, a sice tradiční říše Plantae (rozšířenou na celý přirozený klad ve smyslu Archaeplastida), Fungi a Animalia (ve smyslu Metazoa), a nově seskupené říše protistů – (parafyletickou) Protozoa a (pravděpodobně polyfyletickou) Chromista, přičemž oběma názvům přiřazuje poněkud jiný rozsah, než měly v době svého zavedení.

Fylogenetické stromy na konci článku shrnují graficky představy o skutečné příbuznosti jednotlivých skupin eukaryot.

České názvosloví je založené na databázi BioLib.[1]

Systém dle Adla a kol.

Založeno na systému Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes[2], který v r. 2019 přepracoval Sina M. Adl s kolektivem z předchozích klasifikací protistů z r. 2005[3] a 2012 [4][5]. Systém byl primárně vytvořen pro jednobuněčná eukaryota a vyznačuje se volným členěním (bez názvů taxonomických úrovní jako kmen, třída či řád), přičemž směšuje na stejné úrovni různé taxonomické ranky (namísto monotypických taxonů uvádí rovnou taxon podřízený). V co největší míře se snaží vyhnout nepřirozeným skupinám, proto obsahuje značný počet incertae sedis (v následujícím přehledu uváděny vždy na začátku dané skupiny, aby se vyloučilo jejich mylnému přiřazení k poslední podskupině).

Systém se ve své poslední revizi se stal primární úvodní referencí pro taxonomické studie vyvíjené v rámci mezinárodní taxonomické iniciativy „UniEuk“ s cílem implementace v INSDC (International Nucleotide Sequence Database Collaboration) a ENA (European Nucleotide Archive).[2][6]

Skupiny, u kterých se sice předpokládá monofylie, ale jejich potenciální nepřirozenost není dosud spolehlivě vyloučena, jsou označeny (P). Značka (X) označuje taxony, pro které neexistují dostatečná molekulárně genetická data a jejich struktura či pozice v systému může být v budoucnosti podstatným způsobem revidována. V hranatých závorkách za názvem taxonu se uvádějí používaná synonyma nebo alternativní názvy, včetně názvů nekorektních (s ohledem na příslušné nomenklaturní kódy) či názvů nemajících nomenklaturní prioritu.

Pro přehlednost je systém redukován na 8 nejvyšších úrovní a jsou vypuštěny úrovně rodů a druhů, pokud nejsou reprezentanty monotypických taxonů vyšší úrovně nebo jsou takovým taxonům postaveny na roveň.


DOMÉNA: EUKARYOTA syn. EUKARYA

AMORPHEA (Adl et al. 2012)

Amoebozoa

Obazoa

DIAPHORETICKES (Adl et al. 2012)

Incertae sedis Diaphoretickes

Haptista: Slunivka Raphidiophrys contractilis (Centroplasthelida)

Archaeplastida

Sar

Incertae sedis EUKARYA

Excavata


Systém dle Thomase Cavaliera-Smithe

Systém vznikl již v r. 1998[13] (i když koncepci 6 říší, z toho 5 eukaryotických, publikoval Cavalier-Smith poprvé již v r. 1981[14]), nadále aktualizovány ale byly (až do r. 2022, kdy vyšla, již po autorově smrti, poslední revize podložená vedle genomických dat také podrobnou analýzou přechodových struktur mezi cytoskeletem a bičíky) pouze jeho části věnované protistním eukaryotům.[15][16][17][18][19][20][21][22][23][24][7][25][26][12][27]. Vychází z aktualizovaných představ o evoluci eukaryot a navrhuje nové členění protistů, přitom zachovává tradiční říše Plantae (rozšířenou na celý přirozený klad ve smyslu Archaeplastida), Fungi a Animalia (ve smyslu Metazoa, tedy bez prvoků). Soustředí se však na jednobuněčná eukaryota a nezabývá se podrobnou klasifikací hlavních skupin mnohobuněčných (Metazoa/Animalia, Rhodophyta, Chloroplastida/Viridiplantae a Neomycota/Dikarya u hub). Systém je založen na hypotéze, že kořen fylogenetického stromu se nachází mezi skupinou Euglenozoa a ostatními exkaváty.

Klasifikační systém Cavaliera-Smithe se stal základem protistního a chromistního systému v řídicí klasifikaci živých organismů použité pro projekty Catalogue of Life a Species 2000.[28][29][30]

Systém připouští jako taxony i parafyletické skupiny (značeny (P)). Značka (X) označuje taxony, pro které neexistují dostatečná molekulárně genetická data a jejich struktura či pozice v systému může být v budoucnosti podstatným způsobem revidována. V hranatých závorkách za názvem taxonu se uvádějí používaná synonyma nebo alternativní názvy, včetně názvů nekorektních (s ohledem na příslušné nomenklaturní kódy) či názvů nemajících nomenklaturní prioritu.

Pro přehlednost je systém redukován na vyšší taxonomické úrovně (nejníže do úrovně podřádu).

NADŘÍŠE: EUKARYOTA syn. EUKARYA

Protozoa

Animalia

Klasifikace (mnohobuněčných) živočichů, naposledy v rámci tohoto systému podrobně publikovaná v r. 1998[13], je značně zastaralá a proto zde není uvedena (podrobnější aktuální systém, na kterém se Cavalier Smith také podílel, najdete v článku Klasifikace živočichů).

Fungi

Plantae

Klasifikace rostlin, naposledy v rámci tohoto systému podrobně publikovaná v r. 1998[13], byla značně zastaralá a je zde proto uvedena v rozsahu obecnější verze z r. 2004[15], pokrývající pouze nejvyšší taxony, ale aktualizované a revidované (doplněné o Pararhoda) poslední verzí z r. 2022[27] (podrobný systém s úplným zahrnutím vyšších rostlin, na kterém se však Cavalier-Smith nepodílel, najdete v článku Klasifikace rostlin).

Plantae: Hořec bezlodyžný (Gentianales)

Chromista

Fylogenetické stromy

Níže uvedený fylogenetický strom domény Eukaryota vychází z internetového projektu “Tree of Life”[44] a je upraven podle výsledků aktuálních (r. 2020) fylogenetických analýz, uvedených v odkazech k jednotlivým větvím stromu. Názvy větví pokud možno respektují výše uvedenou klasifikaci dle Siny M. Adla a kolektivu z roku 2019, případně systém T. Cavaliera-Smithe k r. 2018. Některé skupiny jsou nově zavedené, jejich definice je zpravidla v první referenci za jménem.

Protože výše uvedené systémy nemusí vždy plně odrážet fylogenetickou strukturu (v jednom kvůli slabosti fylogenetických hypotéz překypují incertae sedis na různých úrovních, druhý připouští nepřirozené taxony) a navzájem se liší, vychází strom i z dalších zdrojů a v některých aspektech se liší:

Závorka (P) označuje větve, pro které je monofylie prokázaná zatím velmi nedostatečně, může se tedy jednat o skupiny parafyletické či (výjimečně) polyfyletické.

[59][pozn. 8]

Hemimastigophora=Spironemida

[63][64]

Meteora

DiaphoretickesCorticata[4][46][54][47]
klad „CA“[57][58]/„CAM“[61][62]
Archaeplastida[74][75][pozn. 13]
Rhodaria[27]
[pozn. 9]

Picozoa[65] (dříve Picobiliphyta)[66]

[67]

Rhodelphidia

Rhodophyta

(P?)[pozn. 10]

Glaucophyta

Viridiplantae=Chloroplastida

Pancryptista[61][62]

Microheliella

Cryptista[24][52][38][pozn. 12]
Cryptophyta

Katablepharidae

Cryptomonadales

Goniomonadales

Palpitomonas[pozn. 11]

(P)

Endohelea

Provora[60][pozn. 17]

Nebulidia (vč. Ancoracysta[70][67])

Nibbleridia

[57][58]
Haptista[24][52][38] (P)[pozn. 16]
Haptophyta[54]

Pavlovaphyceae

[78]

Rappephyceae[77]

Prymnesiophyceae

Heliozoa,[79] Centroplasthelida

TSAR[56]

Telonemia[pozn. 14][pozn. 15]

Sar=Harosa[50][51][4]
Halvaria[18] (P)
Stramenopila=Heterokonta

Alveolata[81]

Rhizaria[82][75][83][84]

Discoba[47]
[86]
Discicristata
Euglenozoa

Percolozoa=Heterolobosea v širším smyslu

Tsukubamonas[85]

[87]

Jakobea=Loukozoa v užším smyslu

Metamonada (P)
[88]

Anaeramoebae

Parabasalia[pozn. 18]

Preaxostyla=Anaeromonada[90]

Fornicata

[71][pozn. 25] (P) [pozn. 26]

Malawimonadida

Ancyromonadida=Planomonadida[91][pozn. 19]

Podiata[21]
CRuMs[71][pozn. 24] (P)[59]

Mantamonadida[92]

Diphyllatea=Collodictionida[93][94]

Rigifilida (vč. Micronucleariida)

Amorphea[4]
Amoebozoa[112][113][114][19][115][7][32]

Obazoa[116][94]

Breviatea[pozn. 20]

[103]

Apusomonadida

Opisthokonta[109][110][111]
Nucletmycea=Holomycota[107]
Cristidiscoidea=Rotosphaerida[99][100]

Nucleariida

Fonticulida[97][98]

Fungi

Holozoa[103][35][104][pozn. 23]
Ichthyosporea (P)[102]
Ichthyophonida

Eccrinida

Sphaeroformida

Dermocystida

Pluriformea=Corallochytrea (P)[pozn. 22]

Corallochytrium

Syssomonas

?[105][106]

Tunicaraptor

Filozoa
Filasterea[pozn. 21]
[101]

Ministeria + Txikispora

Capsaspora + Pigoraptor

Choanozoa

Choanoflagellata

Metazoa=Animalia

Kořen fylogenetického stromu eukaryot

Výše uvedený strom nemá (úmyslně) vyznačen kořen (tj. posledního společného předka eukaryot, LECA), protože názory na jeho umístění se liší.[121][48]

V současnosti ho nejcitovanější hypotézy kladou dovnitř exkavát:

LECA    
Diphoda

Metamonada

Discoba

Hemimastigophora=Spironemida

Diaphoretickes≈Corticata

Opimoda
(P)

Malawimonas

Ancyromonadida=Planomonadida

Podiata

CRuMs

Amorphea

LECA    

Euglenozoa

Percolozoa

Tsukubamonas

Jakobea

Hemimastigophora=Spironemida

Diaphoretickes≈Corticata

scotocaryotes

Malawimonas

Metamonada

Podiata

Varisulca (P)

Amorphea

Určitou analytickou podporu nalezly některé další hypotézy, umísťující kořen do jiných míst eukaryotického stromu:

Odkazy

Poznámky

  1. a b Do barevných řas v širším smyslu byla navíc řazena fotosyntetizující Alveolata, Rhizaria a Cryptista a jednalo se tak o polyfyletickou skupinu Chromophyta patřící do rostlin, nyní nepoužívanou.[11]
  2. a b Třídy Filasterea a Ichthyosporea (vč. dříve samostatné třídy Corallochytrea) sdružoval Cavalier-Smith do nadtřídy Filosporidia,[34] která se však ukázala jako nepřirozená.[35]
  3. Zamýšlená komplexnější revize podříše Eomycota (po vyčlenění Opisthosporidia do říše Protozoa) zůstala nedokončená, pouze naznačený je záměr zjednodušeného členění na pouhé 2 kmeny po 3 třídách:[27]
    • Kmen Chytridiomycota
      • Třída Parachytriomycetes
      • Třída Chytridiomycetes
      • Třída Allomycetes
    • Kmen Zygomycota
      • Třída Glomomycetes
      • Třída Mucoromycetes
      • Třída Zoomycetes
  4. Chromista jsou podle nových fylogenetických studií pravděpodobně polyfyletickou skupinou[4][38][39][40], i když některé nové studie podporují jejich přirozenost[24].
  5. Na základě fylogenetické analýzy bylo v r. 2014 navrženo vyčlenit rod Colponema resp. třídu Colponemea na úroveň samostatného alveolátního kmene Colponemidia.[41]
  6. Uvnitř exkavát pravděpodobně leží kořen eukaryot; pro jeho přesnou pozici existuje více vzájemně se vylučujících hypotéz.[48][12]
  7. Podle starších a pravděpodobně překonaných fylogenetických analýz tvořila Hacrobia společnou přirozenou skupinu s Archaeplastida (společné označení Plastidophila)[51]. Podle jiných studií mohou tvořit společnou skupinu se skupinou „SAR”[50][24] – tedy Chromalveolata v širším slova smyslu (obsahující Rhizaria), či Chromista v širším slova smyslu dle Cavaliera-Smithe (resp. TSAR – včetně telonemid). Třetí pravděpodobnou možností, na kterou ukazují novější analýzy, je nepřirozenost hacrobií jako celku a umístění skrytěnek, katablefarid a pikozoí na bázi (nebo dovnitř[55]) archaeplastid a haptofyt, centrohelidních slunivek a telonemid na bázi holofyletických TSAR.[38][56].
  8. Alternativní umístění hemimastigofor/spironemid je na bázi větve tvořené skupinami Haptista a SAR/TSAR[59][60], kde může tvořit přirozenou skupinu se sesterskými Centroplasthelida nebo bazálněji postavenou superskupinou Provora (dříve reprezentovanou jen rodem Ancoracysta)[61][62][60]
  9. Zatímco dříve byla Picobiliphyta řazena do příbuzenstva skrytěnek, v novějších analýzách vycházejí Picozoa jako vnitřní větev Archeaplastida sesterská k ruduchám (zpravidla bez zahrnutí Rhodelphidia do analýzy) nebo k ruduchám + Rhodelphidia[68][69], případně jako skupina sesterská k celým Archaeplastida.[24][55][59][61][62]
  10. Zatímco dříve byly (zejména z důvodů morfologie plastidů) za jednoznačnou bazální větev vývojového stromu rostlin považována Glaucophyta, z novějších studií zpravidla vycházejí bazálněji ruduchy resp. Rhodaria.[70][71][59][67] Jako klad však byla vyloučena bývalá Biliphyta, sdružující Glaucophyta a Rhodaria.[27]
  11. Některé dřívější studie studie kladly Palpitomonas na bázi rostlin (Archaeplastida)[72] nebo na bázi hacrobií.[73]
  12. Studie z r. 2016 klade Cryptista dovnitř Archaeplastida, jako sesterskou skupinu kladu tvořeného zelenými rostlinami a glaukofyty.[55] Novější studie z r. 2019 ukazuje, že je asi parafylie Archaeplastid artefaktem způsobeným tzv. přitahováním dlouhých větví.[67]
  13. Ačkoli naprostá většina studií do r. 2015 potvrzuje nebo předpokládá monofylii skupiny Archeaplastida, existují i výjimky, které ji zpochybňují, např. fylogenetická studie jaderných genů s pomalou evolucí[76] vyvozuje, že Rhodophyta a Glaucophyta by mohly být bazálními větvemi k superskupině Viridiplantae+Hacrobia+„SAR”. Také podle nové studie z r. 2016 jsou Archaeplastida parafyletická - uvnitř nich se totiž odvětvují Cryptista: bazální větví jsou ruduchy, Cryptista jsou pak sesterskou skupinou kladu tvořeného zelenými rostlinami a glaukofyty.[55] Novější studie z r. 2019 a 2021 ukazují, že je asi parafylie Archaeplastid artefaktem způsobeným tzv. přitahováním dlouhých větví.[67][61][62] Monofylii Archaeplastida podporují i nové studie z r. 2020, zaměřené na vývoj plastidů, které podrobně analyzují rozpory dřívějších studií.[57][58]
  14. pouhé dva dosud (r. 2022) popsané rody – Arpakorses a Telonema, druh Telonema antarctica někdy vyčleňován jako Lateronema antarctica do samostatného rodu Lateronema[80]
  15. Některé dřívější studie studie kladly rod Telonema do příbuzenstva haptofyt, jako sesterskou skupinu centrohelidních slunivek.[52] Později byl řazen do příbuzenstva skrytěnek, např. jako sesterská skupina Picozoa.[24]
  16. V některých novějších analýzách se Haptista jeví polyfyletická, přičemž Haptophyta leží uvnitř TSAR jako sesterská k telonemidům, centrohelidní slunivky jsou postavená bazálněji a mohou tvořit přirozenou skupinu se sesterskými Hemimastigophora a bazálněji postaveným rodem Ancoracysta[61][62]
  17. Analýza z r. 2024 naznačuje možné bazálnější postavení Provora, reprezentovaných v ní však pouze rodem Ancoracysta, jako sesterské skupiny ke kladu Hemimastigophora + Meteora.[63]
  18. dříve byli Parabasalia považováni za sesterskou skupinu fornikát, se kterými tvořili společnou skupinu Trichozoa[89]
  19. Některé analýzy řadí ankyromonády dovnitř skupiny CRuMs (v tom případě nazývané Varisulca) jako sesterskou skupinu mantamonád.[21][34]
  20. Některé molekulární fylogenetické studie vyčleňují Breviatea (Breviata spolu se sesterskými rody Pygsuia a Subulatomonas a několika environmentálními vzorky), dříve řazená do Amoebozoa, jako bazální klad apusomonád nebo jako samostatný základní klad podiát.[95][96]
  21. Podle fylogenetické studie zahrnující nově popsaný rod Txikispora vycházejí Filasterea, i když s relativně nízkou podporou, jako sesterská skupina plísňovek (Ichthyosporea), a Filozoa jsou tak nepřirozenou skupinou.[101]
  22. Podle některých molekulárních fylogenetických studií je Syssomonas sesterskou skupinou filozoí a linie ke Corallochytrium se odvětvuje bazálněji,[98] případně tvoří společný klad Teretosporea s plísňovkami (Ichthyosporea) jakožto jejich sesterská skupina.[103] Studie z r. 2023 přidala třetí hypotézu a jako nejpravděpodobnější považuje Pluriformea nejbazálnější větví kladu Holozoa.[104]
  23. Přirozené vnitřní uspořádání tohoto kladu není dosud (r. 2024) rozhodnuté. Tři nejpravděpodobnjší hypotézy jsou:[104] 1. nejbazálněji se odvětvují Pluriformea jakožto sesterská skupina ke společnému kladu Ichthyosporea (plísňovky) a Filozoa; 2. Pluriformea a Ichthyosporea se odvětvují jako společný klad Teretosporea; 3. nejbazálněji se odvětvují Ichthyosporea (plísňovky) jakožto sesterská skupina ke společnému kladu Pluriformea a Filozoa. Nejasné je i postavení rodu Tunicaraptor.[105][106] Navíc byla v environmentálních vzorcích identifikována další odlišná vnitřní linie bez popsaného kultivovaného druhu, pracovně zvaná MASHOL.[108]
  24. Tato skupina je pozůstatkem původního kmene Apusozoa[117][118] po vyčlenění skupiny Discocelida a Hemimastigida do Rhizaria: Filosa[119] a apusomonád do Obazoa.[116] Naposledy byly z přirozeného kladu zbylého z Apusozoa, do té doby nazývaného Varisulca[21][34], vyřazeny ankyromonády/planomonády.[71] Skupina Diphyllatea/Collodictyonida bývala někdy řazena na bázi měňavkovců.[94][116]
  25. a b Novější studie z r. 2018, zaměřená na postavení skupiny Hemimastigophora, klade metamonády společně s ankyromonádami jakožto sesterskou skupinou na bázi Opimoda; statistická podpora pro to však byla nízká.[59] K podobnému výsledku dospěla studie z r. 2021, zaměřená však na postavení rostlin a skrytěnek,[61][62] i studie z r. 2022, zaměřená na linie blízké haptistům a Sar.[60]
  26. Některé studie řadily Malawimonas buď do CRuMs/Varisulca jako sesterskou skupinu k Diphyllatea/Collodictyonida,[34][45] nebo dovnitř Amorphea.[120] Jiné analýzy s vypuštěním rychle proměnných úseků a taxonů s dlouhými větvemi však ukazují na oprávněnost nadále považovat malawimonády za blízké metamonádám.[45]

Reference

  1. BioLib – Eukaryota (jaderní)
  2. a b c d ADL, Sina, et al. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. S. 4–119. Journal of Eukaryotic Microbiology [online]. John Wiley & Sons, Inc., 26. září 2018. Svazek 66, čís. 1, s. 4–119. Dostupné online. Dostupné také na: [1]. PDF [2]. ISSN 1550-7408. DOI 10.1111/jeu.12691. PMID 30257078. (anglicky) 
  3. Sina M. Adl, Alastair G. B. Simpson, Mark A. Farmer, Robert A. Andersen, O. Roger Anderson, John A. Barta, Samual S. Bowser, Guy Bragerolle, Robert A. Fensome, Suzanne Fredericq, Timothy Y. James, Sergei Karpov, Paul Kugrens, John Krug, Christopher E. Lane, Louise A. Lewis, Jean Lodge, Denis H. Lynn, David G. Mann, Richard M. McCourt, Leonel Mendoza, Øjvind Moestrup, Sharon E. Mozley-Standridge, Thoams A. Nerad, Carol A. Shearer, Alexey V. Smirnov, Frederick W. Spiegel, Max F. J. R. Taylor. The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. Journal of Eukaryotic Microbiology. 2005, roč. 52, čís. 5, s. 399–451. Dostupné online [cit. 2020-02-25]. Dostupné také na: [3]. 
  4. a b c d e f g h ADL, Sina M., et al. The Revised Classification of Eukaryotes. S. 429–514. Journal of Eukaryotic Microbiology [online]. 28. září 2012. Svazek 59, čís. 5, s. 429–514. Dostupné online. PDF [4]. ISSN 1550-7408. DOI 10.1111/j.1550-7408.2012.00644.x. PMID 23020233. (anglicky) 
  5. Erratum. S. 321. Journal of Eukaryotic Microbiology [online]. 11. březen 2013. Svazek 60, čís. 3, s. 321. Opravy k předchozí referenci. Dostupné online. PDF [5]. ISSN 1550-7408. DOI 10.1111/jeu.12033. (anglicky) 
  6. BERNEY, Cédric, et al. UniEuk: Time to Speak a Common Language in Protistology!. S. 407–411. Journal of Eukaryotic Microbiology [online]. John Wiley & Sons, Inc., 24. březen 2017. Svazek 64, čís. 3, s. 407–411. Dostupné online. ISSN 1550-7408. DOI 10.1111/jeu.12414. (anglicky) 
  7. a b c d CAVALIER-SMITH, Thomas; CHAO, Ema E.; LEWIS, Rhodri. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. S. 275–296. Molecular Phylogenetics and Evolution [online]. 18. březen 2016. Svazek 99, s. 275–296. Dostupné online. ISSN 1055-7903. DOI 10.1016/j.ympev. 2016.03.023. PMID 27001604. (anglicky) 
  8. BASS, David; CZECH, Lucas; WILLIAMS, Bryony A. P.; BERNEY, Cédric; DUNTHORN, Micah; MAHÉ, Frederic; TORRUELLA, Guifré, STENTIFORD, Grant D.; WILLIAMS, Tom A. Clarifying the Relationships between Microsporidia and Cryptomycota. S. 773–782. Journal of Eukaryotic Microbiology [online]. John Wiley & Sons, Inc., 28. duben 2018. Svazek 65, čís. 6, s. 773–782. Dostupné online. Dostupné také na: [6]. Dále dostupné na: [7]. ISSN 1550-7408. DOI 10.1111/jeu.12519. PMID 29603494. (anglicky) 
  9. a b c TEDERSOO, Leho; SÁNCHEZ-RAMÍREZ,, Santiago; KÕLJALG, Urmas; BAHRAM, Mohammad; DÖRING, Markus; SCHIGEL, Dmitry; MAY, Tom, RYBERG, Martin; ABARENKOV, Kessy. High-level classification of the Fungi and a tool for evolutionary ecological analyses. S. 135–159. Fungal Diversity [online]. Springer Netherlands, 16. květen 2018. Svazek 90, čís. 1, s. 135–159. Dostupné online. ISSN 1878-9129. DOI 10.1007/s13225-018-0401-0. (anglicky) 
  10. TORRUELLA, Guifré; GRAU-BOVÉ, Xavier; MOREIRA, David; KARPOV, Sergey A.; BURNS, John A.; SEBÉ-PEDRÓS, Arnau; VÖLCKER, Eckhard, LÓPEZ-GARCÍA, Purificación. The aphelid-like phagotrophic origins of fungi. BioRχiv [online]. 17. srpen 2018. Online před tiskem. Dostupné online. DOI 10.1101/233882. (anglicky) 
  11. ČIHAŘ, Jiří, a kol. Příroda v ČSSR. Ilustrace ZPĚVÁK, Jaromír. 1. vyd. Praha: Práce, 1976. 384 s. Dostupné online. 24-110-76. Kapitola (III) Systematický přehled rostlin a živočichů – Rostliny, s. 40. 
  12. a b c d e f CAVALIER-SMITH, Thomas; CHAO,, Ema E.; LEWIS, Rhodri. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. S. 1517–1574. Protoplasma [online]. Springer Nature, 17. duben 2018. Svazek 255, čís. 5, s. 1517–1574. Dostupné online. Dostupné také na: [8]. Dále dostupné na: [9]. ISSN 1615-6102. DOI 10.1007/s00709-018-1241-1. PMID 29666938. (anglicky) 
  13. a b c CAVALIER-SMITH, Thomas. A revised six-kingdom system of life. S. 203–266. Biological reviews of the Cambridge Philosophical Society [online]. Cambridge Philosophical Society, John Wiley & Sons, Inc., srpen 1998. Svazek 94, čís. 3, s. 203–266. Dostupné online. PDF [10]. PDF [www.vliz.be/imisdocs/publications/ocrd/63633.pdf]. ISSN 1469-185X. DOI 10.1111/j.1469-185X.1998.tb00030.x. PMID 9809012. (anglicky) 
  14. CAVALIER-SMITH, Thomas. Eukaryote kingdoms: seven or nine?. S. 461–481, Tabulka 11. Biosystems [online]. Elsevier Ireland Ltd., 1981. Svazek 14, čís. 3–4, s. 461–481. Dostupné online. PDF [11]. ISSN 0303-2647. PMID 7337818. (anglicky) 
  15. a b CAVALIER-SMITH, Thomas. Only six kingdoms of life. S. 1251–1262. Proceedings of the Royal Society B [online]. 22. červenec 2004. Svazek 271, čís. 1545, s. 1251–1262. Dostupné online. Dostupné také na: [12]. ISSN 1471-2954. DOI 10.1098/rspb.2004.2705. PMID 15306349. (anglicky) 
  16. CAVALIER-SMITH, Thomas; CHAO, Ema E-Y. Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista). S. 388–420. Journal of Molecular Evolution [online]. 22. březen 2006. Svazek 62, čís. 4, s. 388–420. PDF [13]. PDF (příloha) [14]. ISSN 1432-1432. DOI 10.1007/s00239-004-0353-8. PMID 16557340. (anglicky) 
  17. a b CAVALIER-SMITH, Thomas; NIKOLAEV, Sergey. The Zooflagellates Stephanopogon and Percolomonas are a Clade (Class Percolatea: Phylum Percolozoa). S. 501–509. Journal of Eukaryotic Microbiology [online]. 24. červenec 2008. Svazek 55, čís. 6, s. 501–509. Dostupné online. Dostupné také na: [15]. ISSN 1550-7408. DOI 10.1111/j.1550-7408.2008.00356.x. PMID 19120795. (anglicky) 
  18. a b c CAVALIER-SMITH, Thomas. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. S. 342–345. Biology Letters [online]. 23. prosinec 2009 [cit. 2010-07-21]. Svazek 6, čís. 3, s. 342–345. Data supplement, s. 2. Dostupné online. pdf [16]. doc [17]. ISSN 1744-957X. DOI 10.1098/rsbl.2009.0948. (anglicky) 
  19. a b SMIRNOV, Alexey V.; CHAO, Ema E.; NASSONOVA, Elena S.; CAVALIER-SMITH, Thomas. A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa). Protist. Elsevier B.V., 28. červenec 2011, svazek 162, čís. 4, s. 545–570. Dostupné online. PDF [18]. ISSN 1434-4610. DOI 10.1016/j.protis.2011.04.004. PMID 21798804. (anglicky) 
  20. CAVALIER-SMITH, Thomas; OATES, Brian. Ultrastructure of Allapsa vibrans and the Body Plan of Glissomonadida (Cercozoa). S. 165–187. Protist [online]. Elsevier GmbH, 29. prosinec 2011. Svazek 163, čís. 2, s. 165–187. Dostupné online. ISSN 1434-4610. DOI 10.1016/j.protis.2011.10.006. PMID 22209009. (anglicky) 
  21. a b c d e f g h i j CAVALIER-SMITH, Thomas. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. S. 115–178. European Journal of Protistology [online]. 19. říjen 2012. Svazek 49, čís. 2, s. 115–178. Dostupné online. ISSN 0932-4739. DOI 10.1016/j.ejop.2012.06.001. (anglicky) 
  22. CAVALIER-SMITH, Thomas; SCOBLE, Josephine Margaret. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. S. 328–353. European Journal of Protistology [online]. 4. prosinec 2012. Svazek 49, čís. 3, s. 328–353. Dostupné online. ISSN 0932-4739. DOI 10.1016/j.ejop.2012.09.002. (anglicky) 
  23. CAVALIER-SMITH, Thomas. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. S. 472–495. European Journal of Protistology [online]. 30. čeren 2014. Svazek 50, čís. 5, s. 472–495. Dostupné online. ISSN 0932-4739. DOI 10.1016/j.ejop.2014.07.002. (anglicky) 
  24. a b c d e f g h i CAVALIER-SMITH, Thomas; CHAO, Ema E.; LEWIS, Rhodri. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. S. 331–362. Molecular Phylogenetics and Evolution [online]. Srpen 2015. Svazek 93, s. 331–362. Dostupné online. ISSN 1055-7903. DOI 10.1016/j.ympev.2015.07.004. PMID 26234272. (anglicky) 
  25. a b CAVALIER-SMITH, Thomas. Higher Classification and Phylogeny of Euglenozoa. S. 250–276. European Journal of Protistology [online]. 15. září 2016. Svazek 56, s. 250–276. Dostupné online. ISSN 0932-4739. DOI 10.1016/j.ejop.2016.09.003. (anglicky) 
  26. a b CAVALIER-SMITH, Thomas. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. S. 297–357 + příloha ESM 1, s. 11-18. Protoplasma [online]. Springer Nature, 5. září 2017. Svazek 255, čís. 1, s. 297–357 + příloha ESM 1, s. 11-18. Dostupné online. Dostupné také na: [19]. PDF (příloha ESM 1) [20]. ISSN 1615-6102. DOI 10.1007/s00709-017-1147-3. PMID 28875267. (anglicky) 
  27. a b c d e f g h i j k l CAVALIER-SMITH, Thomas. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. S. 487–593. Protoplasma [online]. Springer, 2022-05 [cit. 2023-04-04]. Svazek 259, čís. 3, s. 487–593. Dostupné online. ISSN 1615-6102. DOI 10.1007/s00709-021-01665-7. PMID 34940909. (anglicky) 
  28. In: ROSKOV, Y., NICOLSON, D.; BAILLY, N.; KIRK, P. M.; BOURGOIN, T., DeWALT R.E., DECOCK W., NIEUKERKEN E. van, ZARUCCHI J., PENEV L. Species 2000 & ITIS Catalogue of Life. [s.l.]: Species 2000: Naturalis, Leiden, the Netherlands, 2019. [www.catalogueoflife.org/col Dostupné online]. ISSN 2405-8858. Kapitola Classification. (anglicky)
  29. RUGGIERO, Michael A.; GORDON, Dennis P.; ORRELL, Thomas M., BAILLY, Nicolas; BOURGOIN, Thierry; BRUSCA, Richard C.; CAVALIER-SMITH, Thomas; GUIRY, Michael D.; KIRK, Paul M. A Higher Level Classification of All Living Organisms. PLoS ONE [online]. 29. duben 2015. Svazek 10, čís. 4: e0119248. Dostupné online. PPT [21]. PNG [22]. ISSN 1932-6203. DOI 10.1371/journal.pone.0130114. PMID 25923521. (anglicky) 
  30. RUGGIERO, Michael A.; GORDON, Dennis P.; ORRELL, Thomas M., BAILLY, Nicolas; BOURGOIN, Thierry; BRUSCA, Richard C.; CAVALIER-SMITH, Thomas; GUIRY, Michael D.; KIRK, Paul M. Correction: A Higher Level Classification of All Living Organisms. PLoS ONE [online]. 11. červen 2015. Svazek 10, čís. 6: e0130114. Dostupné online. PPT [23]. PNG [24]. ISSN 1932-6203. DOI 10.1371/journal.pone.0130114. PMID 26068874. (anglicky) 
  31. HARDING, Tommy; BROWN, Matthew W.; PLOTNIKOV, Andrey; SELIVANOVA, Elena; PARK, Jong Soo; GUNDERSON, John H.; BAUMGARTNER, SILBERMAN, Jeffrey D.; ROGER, Andrew J.; SIMPSON, Alastair G. B. Amoeba Stages in the Deepest Branching Heteroloboseans, Including Pharyngomonas: Evolutionary and Systematic Implications. S. 272–286. Protist [online]. 27. září 2012. Svazek 164, čís. 2, s. 272–286. Dostupné online. DOI 10.1016/j.protis.2012.08.002. PMID 23021907. (anglicky) 
  32. a b KANG, Seungho; TICE, Alexander K.; SPIEGEL, Frederick W.; SILBERMAN, Jeffrey D.; PÁNEK, Tomáš; ČEPIČKA, Ivan; KOSTKA, Martin, KOSAKYAN, Anush; ALCÂNTARA, Daniel M. C.; ROGER, Andrew J.; SHADWICK, Lora L.; SMIRNOV, Alexej; KUDRJAVCEV, Alexander; LAHR, Daniel J. G.; BROWN, Matthew W. Between a Pod and a Hard Test: The Deep Evolution of Amoebae. S. 2258–2270. Molecular Biology and Evolution [online]. Oxford University Press, 15. květen 2017. Svazek 34, čís. 9, s. 2258–2270. Dostupné online. Dostupné také na: [25]. Dále dostupné na: [26]. ISSN 1537-1719. DOI 10.1093/molbev/msx162. PMID 28505375. (anglicky) 
  33. a b TEKLE, Yonas I.; ANDERSON, O. Roger; KATZ, Laura A.; MAURER-ALCALÁ, Xyrus X.; ROMERO, Mario Alberto Cerón; MOLESTINA, Robert. Phylogenomics of ‘Discosea’: A new molecular phylogenetic perspective on Amoebozoa with flat body forms. S. 144–154. Molecular Phylogenetics and Evolution [online]. Elsevier Inc., 22. březen 2016. Svazek 99, s. 144–154. Dostupné online. Dostupné také na: [27]. ISSN 1055-7903. DOI 10.1016/j.ympev.2016.03.029. PMID 27015898. (anglicky) 
  34. a b c d e CAVALIER-SMITH, Thomas; CHAO, Ema E.; SNELL, Elizabeth A., Berney, Cédric; Fiore-Donno, Anna Maria; Lewis, Rhodri. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Molecular Phylogenetics and Evolution. 21. srpen 2014, svazek 81, s. 71–85. Dostupné online. ISSN 1055-7903. DOI 10.1016/j.ympev.2014.08.012. PMID 25152275. (anglicky) 
  35. a b HEHENBERGER, Elisabeth; TICHONĚNKOV, Denis Viktorovič; KOLÍSKO, Martin; DEL CAMPO, Javier; ESAULOV, Anton S.; MYLNIKOV, Alexander P.; KEELING, Patrick J. Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals. S. 2043–2050.e6. Current Biology [online]. Elsevier Inc., 22. červen 2017. Svazek 27, čís. 13, s. 2043–2050.e6. Dostupné online. ISSN 0960-9822. DOI 10.1016/j.cub.2017.06.006. PMID 28648822. (anglicky) 
  36. KARPOV, Sergey A.; MAMKAEVA, Maria A.; NASSONOVA, Elena, LILJE, Osu; GLEASON, Frank H. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. S. 1–11. Frontiers in Microbiology [online]. 28. březen 2014. Svazek 5, čís. 112, s. 1–11. Dostupné online. DOI 10.3389/fmicb.2014.00112. (anglicky) 
  37. WIJAYAWARDENE, Nalin N.; HYDE, Kevin D., Al-Ani L. K. T., Tedersoo L., Haelewaters D., Rajeshkumar K. C., Zhao R. L., Aptroot A., Leontyev D. V., Saxena R. K., Tokarev Y. S., Dai D. Q., Letcher P. M., Stephenson S. L., Ertz D., Lumbsch H. T., Kukwa M., Issi I. V., Madrid H., Phillips A. J. L., Selbmann L., Pfliegler W. P., Horváth E., Bensch K., Kirk P. M., Kolaříková K., Raja H. A., Radek R., Papp V., Dima B., Ma J., Malosso E., Takamatsu S., Rambold G., Gannibal P. B., Triebel D., Gautam A. K., Avasthi S., Suetrong S., Timdal E., Fryar S. C., Delgado G., Réblová M., Doilom M., Dolatabadi S., Pawłowska J., Humber R. A., Kodsueb R., Sánchez-Castro I., Goto B. T., Silva D. K. A., de Souza F. A., Oehl F., da Silva G. A., Silva I. R., Błaszkowski J., Jobim K., Maia L. C., Barbosa F. R., Fiuza P. O., Divakar P. K., Shenoy B. D., Castañeda-Ruiz R. F., Somrithipol S., Lateef A. A., Karunarathna S. C., Tibpromma S., Mortimer P. E., Wanasinghe D. N., Phookamsak R., Xu J., Wang Y., Tian F., Alvarado P., Li D. W., Kušan I., Matočec N., Maharachchikumbura S. S. N., Papizadeh M., Heredia G., Wartchow F., Bakhshi M., Boehm E., Youssef N., Hustad V. P., Lawrey J. D., Santiago A. L. C. M. A., Bezerra J. D. P., Souza-Motta C. M., Firmino A. L., Tian Q., Houbraken J., Hongsanan S., Tanaka K., Dissanayake A. J., Monteiro J. S., Grossart H. P., Suija A., Weerakoon G., Etayo J., Tsurykau A., Vázquez V., Mungai P., Damm U., Li Q. R., Zhang H., Boonmee S., Lu Y. Z., Becerra A. G., Kendrick B., Brearley F. Q., Motiejūnaitė J., Sharma B., Khare R., Gaikwad S., Wijesundara D. S. A., Tang L. Z., He M. Q., Flakus A., Rodriguez-Flakus P., Zhurbenko M. P., McKenzie E. H. C., Stadler M., Bhat D. J., Liu J. K., Raza M., Jeewon R., Nassonova E. S., Prieto M., Jayalal R. G. U., Erdoğdu M., Yurkov A., Schnittler M., Shchepin O. N., Novozhilov Y. K., Silva-Filho A. G. S., Liu P., Cavender J. C., Kang Y., Mohammad S., Zhang L. F., Xu R. F., Li Y. M., Dayarathne M. C., Ekanayaka A. H., Wen T. C., Deng C. Y., Pereira O. L., Navathe S., Hawksworth D. L., Fan X. L., Dissanayake L. S., Kuhnert E., Grossart H. P., Thines M. Outline of Fungi and fungus-like taxa. S. 1060–1456. Mycosphere [online]. Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, 18. březen 2020 [cit. 2020-09-05]. Svazek 11, čís. 1:8, s. 1060–1456. Dostupné online. ISSN 2077-7019. DOI 10.5943/mycosphere/11/1/8. (anglicky) 
  38. a b c d e BURKI, Fabien; OKAMOTO, Noriko; POMBERT, Jean-François, KEELING, Patrick J. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. S. 2246–2254. Proceedings of the Royal Society B [online]. 7. červen 2012 [cit. 2012-05-29]. Svazek 279, čís. 1736, s. 2246–2254. Dostupné online. ISSN 1471-2954. DOI 10.1098/rspb.2011.2301. (anglicky) 
  39. BAURAIN, Denis; BRINKMANN, Henner; PETERSEN, Jörn, RODRÍGUEZ-EZPELETA, Naiara; STECHMANN, Alexandra; DEMOULIN, Vincent; ROGER, Andrew J.; BURGER, Gertraud; LANG, B. Franz; PHILIPPE, Hervé. Phylogenomic Evidence for Separate Acquisition of Plastids in Cryptophytes, Haptophytes, and Stramenopiles. S. 1698–1709. Molecular Biology and Evolution [online]. 1.. březen 2010. Svazek 27, čís. 7, s. 1698–1709. Dostupné online. PDF [28]. ISSN 1537-1719. DOI 10.1093/molbev/msq059. PMID 20194427. (anglicky) 
  40. STILLER, John W.; HUANG, Jinling; DING, Qin, TIAN, Jing; GOODWILLIE, Carol. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?. S. 1–16. BMC Genomics [online]. 20. říjen 2009. Svazek 10, čís. 484, s. 1–16. Dostupné online. PDF [29]. ISSN 1471-2164. DOI 10.1186/1471-2164-10-484. PMID 19843329. (anglicky) 
  41. TIKHONENKOV, Denis V.; JANOUŠKOVEC, Jan; MYLNIKOV, Alexander P., MIKHAILOV, Kirill V.; SIMDYANOV, Timur G.; ALEOSHIN, Vladimir V.; KEELING, Patrick J. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., Two New Alveolate Phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and Their Contributions to Reconstructing the Ancestral State of Alveolates and Eukaryotes. S. 1–16. PLoS ONE [online]. 16. duben 2014. Svazek 9, čís. 4: e95467, s. 1–16. Dostupné online. DOI 10.1371/journal.pone.0095467. (anglicky) 
  42. WEGENER PARFREY, Laura; GRANT, Jessica; TEKLE, Yonas I., Lasek Nesselquist, Erica; Morrison, Hilary G.; Sogin, Mitchell L.; Patterson, David J.; Katz, Laura A. Broadly Sampled Multigene Analyses Yield a Well Resolved Eukaryotic Tree of Life. S. 518–533. Systematic biology [online]. 23. červenec 2010. Svazek 59, čís. 5, s. 518–533. Dostupné online. PDF [30]. ISSN 1076-836X. DOI 10.1093/sysbio/syq037. PMID 20656852. (anglicky) 
  43. EDVARDSEN, Bente; EIKREM, Wenche, GREEN, J. C.; ANDERSEN, Robert A.; MOON-van der STAAY, Seung Yeo; MEDLIN, Linda K. Phylogenetic reconstructions of the Haptophyta inferred from 18s ribosomal DNA sequences and available morphological data. S. 19–35. Phycologia [online]. 4. únor 2000. Svazek 39, čís. 1, s. 19–35. Dostupné online. PDF [31]. ISSN 0031-8884. DOI 10.2216/i0031-8884-39-1-19.1. (anglicky) 
  44. Tree of Life: Eukaryotes
  45. a b c HEISS, Aaron A.; KOLISKO, Martin; EKELUND, Fleming; BROWN, Matthew W.; ROGER, Andrew J.; SIMPSON, Alastair G. B. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. S. 1–13. Royal Society Open Science [online]. Royal Society, 4. duben 2018. Svazek 5, čís. 4: 171707, s. 1–13. Dostupné online. Dostupné také na: [32]. ISSN 2054-5703. DOI 10.1098/rsos.171707. PMID 29765641. (anglicky) 
  46. a b BURKI, Fabien; SHALCHIAN-TABRIZI, Kamran; PAWLOWSKI, Jan. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. S. 366–369. Biology Letters [online]. 23. srpen 2008 [cit. 2009-10-05]. Svazek 4, čís. 4, s. 366–369. Dostupné online. PDF [33]. ISSN 1744-957X. DOI 10.1098/rsbl.2008.0224. PMID 18522922. (anglicky) 
  47. a b c d HAMPL, Vladimír; HUG, Laura; LEIGH, Jessica W., Joel B. Dacks, B. Franz Lang, Alastair G. B. Simpson, Andrew J. Roger. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences of the USA. 10. březen 2009, svazek 106, čís. 10, s. 3859–3864. Dostupné online [cit. 2009-12-10]. DOI 10.1073/pnas.0807880106. (anglicky)  Archivováno 12. 2. 2020 na Wayback Machine.
  48. a b c d e f g ELIÁŠ, Marek. Potíže s kořenem. S. 270–273. Vesmír [online]. 4. květen 2017 [cit. 2017-08-22]. Roč. 96, čís. 2017/5, s. 270–273. Dostupné v archivu pořízeném dne 2017-08-22. ISSN 1214-4029. 
  49. SIMPSON, Alastair G. B.; ROGER, Andrew J. Excavata and the origin of amitochondriate eukaryotes; ve sborníku Organelles, Genomes, and Eukaryote Phylogeny: An Evolutionary Synthesis in the Age of Genomics. Příprava vydání Robert P. Hirt, David S. Horner. Boca Raton, Florida, USA: CRC Press,, 2004. (Systematics Association special volume; sv. 68). Dostupné online. ISBN 0-415-29904-7. Sekce I, s. 27–54. (anglicky) 
  50. a b c d BURKI, Fabien; SHALCHIAN-TABRIZI, Kamran, Marianne Minge, Åsmund Skjæveland, Sergey I. Nikolaev, Kjetill S. Jakobsen, Jan Pawlowski. Phylogenomics Reshuffles the Eukaryotic Supergroups. S. 1–6, e790. PLoS ONE [online]. 29. srpen 2007 [cit. 2009-10-08]. Svazek 2, čís. 8, s. 1–6. Dostupné online. PDF [34]. DOI 10.1371/journal.pone.0000790. (anglicky) 
  51. a b c KIM, Eunsoo; GRAHAM, Linda E. EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata. S. 1–10, e2621. PLoS ONE [online]. 9. červenec 2008 [cit. 2009-10-08]. Svazek 3, čís. 7, s. 1–10. Dostupné online. PDF [35]. DOI 10.1371/journal.pone.0002621. (anglicky) 
  52. a b c d OKAMOTO, Noriko, Chitchai Chantangsi, Aleš Horák, Brian S. Leander, Patrick J. Keeling. Molecular Phylogeny and Description of the Novel Katablepharid Roombia truncata gen. et sp. nov., and Establishment of the Hacrobia Taxon nov. S. 1–11, e7080. PLoS ONE [online]. 17. září 2009 [cit. 2009-10-05]. Svazek 4, čís. 9, s. 1–11. Dostupné online. PDF [36]. DOI 10.1371/journal.pone.0007080. (anglicky) 
  53. KEELING, Patrick J. Chromalveolates and the Evolution of Plastids by Secondary Endosymbiosis. The Journal of Eukaryotic Microbiology. 19. září 2008, svazek 56, čís. 1, s. 1–8. Dostupné online [cit. 2009-10-05]. DOI 10.1111/j.1550-7408.2008.00371.x. (anglicky) 
  54. a b c BURKI, Fabien; INAGAKI, Yuji, Jon Bråte, John M. Archibald, Patrick J. Keeling, Thomas Cavalier-Smith, Miako Sakaguchi, Tetsuo Hashimoto, Ales Horak, Surendra Kumar, Dag Klaveness, Kjetill S. Jakobsen, Jan Pawlowski, Kamran Shalchian-Tabrizi. Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates. S. 231–238. Genome Biology and Evolution [online]. 13. srpen 2009 [cit. 2009-10-05]. Roč. 2009, s. 231–238. Dostupné online. PDF [37]. ISSN 1759-6653. DOI 10.1093/gbe/evp022. (anglicky) 
  55. a b c d BURKI, Fabien; KAPLAN, Maia; TIKHONENKOV, Denis V., ZLATOGURSKY, Vasily; MINH, Bui Quang; RADAYKINA, Liudmila V.; SMIRNOV, Alexey; MYLNIKOV, Alexander P.; KEELING, Patrick J. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proceedings of the Royal Society B [online]. 27. leden 2016. Svazek 283, čís. 1823. Dostupné online. ISSN 1471-2954. DOI 10.1098/rspb.2015.2802. PMID 26817772. (anglicky) 
  56. a b STRASSERT, Jürgen F. H.; JAMY, Mahwash; MYLNIKOV, Alexander P.; TIKHONENKOV, Denis V.; BURKI, Fabien. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. S. 757–765. Molecular Biology and Evolution [online]. Oxford University Press, 22. leden 2019. Svazek 34, čís. 4, s. 757–765. Dostupné online. Dostupné také na: [38]. Dále dostupné na: [39]. ISSN 1537-1719. DOI 10.1093/molbev/msz012. (anglicky) 
  57. a b c d IRISARRI, Iker; STRASSERT, Jürgen F. H.; BURKI, Fabien. Phylogenomic Insights into the Origin of Primary Plastids. bioRχiv [online]. Cold Spring Harbor Laboratory, 4. srpen 2020 [cit. 2020-12-02]. Dostupné online. DOI 10.1101/2020.08.03.231043. (anglicky) 
  58. a b c d STRASSERT, Jürgen F. H.; IRISARRI, Iker; WILLIAMS, Tom A.; BURKI, Fabien. A molecular timescale for the origin of red algal-derived plastids. bioRχiv [online]. Cold Spring Harbor Laboratory, 21. srpen 2021 [cit. 2020-12-02]. Dostupné online. DOI 10.1101/2020.08.20.259127. (anglicky) 
  59. a b c d e f LAX, Gordon; EGLIT, Yana; EME, Laura; BERTRAND, Erin M.; ROGER, Andrew J.; SIMPSON, Alastair G. B. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. S. 410–414. Nature [online]. Springer Nature Publishing AG, 14. listopad 2018. Svazek 564, čís. 7736, s. 410–414. Dostupné online. Dostupné také na: [40]. ISSN 1476-4687. DOI 10.1038/s41586-018-0708-8. PMID 30429611. (anglicky) 
  60. a b c d TIKHONENKOV, Denis V.; MIKHAILOV, Kirill V.; GAWRYLUK, Ryan M. R.; BELYAEV, Artem O.; MATHUR, Varsha; KARPOV, Sergey A.; ZAGUMYONNYI, Dmitry G. Microbial predators form a new supergroup of eukaryotes. Nature [online]. Springer Nature Limited, 2022-12-07 [cit. 2022-12-09]. Online před tiskem. ISSN 1476-4687. DOI 10.1038/s41586-022-05511-5. PMID 36477531. (anglicky) 
  61. a b c d e f g YAZAKI, Euki; YABUKI, Akinori; IMAIZUMI, Ayaka; KUME, Keitaro; HASHIMOTO, Tetsuo; INAGAKI, Yuji. Phylogenomics invokes the clade housing Cryptista, Archaeplastida, and Microheliella maris. bioRχiv [online]. Cold Spring Harbor Laboratory, 31. srpen 2021 [cit. 2021-11-25]. Preprint před vydáním. Dostupné online. DOI 10.1101/2021.08.29.458128. (anglicky) 
  62. a b c d e f g YAZAKI, Euki; YABUKI, Akinori; IMAIZUMI, Ayaka; KUME, Keitaro; HASHIMOTO, Tetsuo; INAGAKI, Yuji. The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris. Open Biology [online]. The Royal Society, 13. duben 2022 [cit. 2022-07-18]. Svazek 12, čís. 4: 210376. Dostupné online. Dostupné také na: [41]. ISSN 2046-2441. DOI 0.1098/rsob.210376. PMID 35414259. (anglicky) 
  63. a b EGLIT, Yana; SHIRATORI, Takashi; JERLSTRÖM-HULTQVIST, Jon; WILLIAMSON, Kelsey; ROGER, Andrew J.; ISHIDA, Ken-Ichiro; SIMPSON, Alastair G.B. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. S. 451–459.e6. Current Biology [online]. Cell Press, 2024-01 [cit. 2024-02-05]. Roč. 34, čís. 2, s. 451–459.e6. Dostupné online. ISSN 1879-0445. DOI 10.1016/j.cub.2023.12.032. PMID 38262350. (anglicky) 
  64. GALINDO, Luis Javier; LÓPEZ-GARCÍA, Purificación; MOREIRA, David. First Molecular Characterization of the Elusive Marine Protist Meteora sporadica. Protist [online]. Elsevier GmbH, 2022-08 [cit. 2022-09-06]. Roč. 173, čís. 4: 125896. ISSN 1434-4610. DOI 10.1016/j.protis.2022.125896. PMID 35841658. (anglicky) 
  65. SEENIVASAN, Ramkumar; SAUSEN, Nicole; MEDLIN, Linda K., MELKONIAN, Michael. Picomonas judraskeda Gen. Et Sp. Nov.: The First Identified Member of the Picozoa Phylum Nov., a Widespread Group of Picoeukaryotes, Formerly Known as ‘Picobiliphytes’. S. 1–18. PLoS ONE [online]. 26. březen 2013. Svazek 8, čís. 3: e59565, s. 1–18. Dostupné online. ISSN 1932-6203. DOI 10.1371/journal.pone.0059565. (anglicky) 
  66. NOT, Fabrice; VALENTIN, Klaus; ROMARI, Khadidja, Connie Lovejoy, Ramon Massana, Kerstin Töbe, Daniel Vaulot, Linda K. Medlin. Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes. Science. 12. leden 2007, svazek 315, čís. 5809, s. 253 – 255. Dostupné online [abstrakt, cit. 2009-10-08]. ISSN 1095-9203. DOI 10.1126/science.1136264. (anglicky) 
  67. a b c d e GAWRYLUK, Ryan M. R.; TIKHONENKOV, Denis V.; HEHENBERGER, Elisabeth; HUSNIK, Filip; MYLNIKOV, Alexander P.; KEELING, Patrick J. Non-photosynthetic predators are sister to red algae. Nature [online]. Springer Nature Publishing AG, 17. červenec 2019. Online před tiskem. Dostupné online. Dostupné také na: [42]. ISSN 1476-4687. DOI 10.1038/s41586-019-1398-6. PMID 31316212. (anglicky) 
  68. SCHÖN, Max Emil, et al. Picozoa are archaeplastids without plastid. ResearchGate [online]. 2021-04-14 [cit. 2022-01-04]. Preprint. Dostupné online. DOI 10.1101/2021.04.14.439778. (anglicky) 
  69. SCHÖN, Max Emil; ZLATOGURSKY, Vasily; SINGH, Roha P.; POIRIER, Camille; WILKEN, Susanne; MATHUR, Varsha; STRASSERT, Jürgen F. H. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nature Communications [online]. Springer Nature Limited, 2021-11-17 [cit. 2022-01-04]. Svazek 12: 6651. Dostupné online. Dostupné také na: [43]. ISSN 2041-1723. DOI 10.1038/s41467-021-26918-0. PMID 34789758. (anglicky) 
  70. a b JANOUŠKOVEC, Jan; TIKHONENKOV, Denis V.; BURKI, Fabien; HOWE, Alexis T.; ROHWER, Forest L.; MYLNIKOV, Alexander P.; KEELING, Patrick J. A New Lineage of Eukaryotes Illuminates Early Mitochondrial Genome Reduction. S. 3717–3724.e5. Current Biology [online]. Elsevier Inc., 22. listopad 2017. Svazek 27, čís. 23, s. 3717–3724.e5. Dostupné online. Dostupné také na: [44]. ISSN 0960-9822. DOI 10.1016/j.cub.2017.10.051. PMID 29174886. (anglicky) 
  71. a b c d BROWN, Matthew W.; HEISS, Aaron A.; KAMIKAWA, Ryoma; INAGAKI, Yuji; YABUKI, Akinori; TICE, Alexander K.; SHIRATORI, Takashi, ISHIDA, Ken-Ichiro; HASHIMOTO, Tetsuo; SIMPSON, Alastair G. B.; ROGER, Andrew J. Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. S. 427–433. Genome Biology and Evolution [online]. Oxford University Press, 19. leden 2018. Svazek 10, čís. 2, s. 427–433. Dostupné online. Dostupné také na: [45]. Dále dostupné na: [46]. ISSN 1759-6653. DOI 10.1093/gbe/evy014. PMID 29360967. (anglicky) 
  72. YABUKI, Akinori; INAGAKI, Yuji; ISHIDA, Ken-ichiro. Palpitomonas bilix gen. et sp. nov.: A Novel Deep-branching Heterotroph Possibly Related to Archaeplastida or Hacrobia. Protist. 24. duben 2010, svazek 161, čís. 4, s. 523–538. Dostupné online [cit. 2011-01-04]. ISSN 1434-4610. DOI 10.1016/j.protis.2010.03.001. PMID 20418156. (anglicky) 
  73. CAVALIER-SMITH, Thomas; CHAO, Ema E. Oxnerella micra sp. n. (Oxnerellidae fam. n.), a Tiny Naked Centrohelid, and the Diversity and Evolution of Heliozoa. S. 574–601. Protist [online]. 6. únor 2012. Svazek 163, s. 574–601. Dostupné online. ISSN 1434-4610. DOI 10.1016/j.protis.2011.12.005. (anglicky) 
  74. RODRÍGUEZ-EZPELETA, Naiara, Henner Brinkmann, Suzanne C. Burey, Béatrice Roure, Gertraud Burger, Wolfgang Löffelhardt, Hans J. Bohnert, Hervé Philippe, B. Franz Lang. Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes. S. 1325–1330. Current Biology [online]. 26. červenec 2005 [cit. 2009-10-08]. Svazek 15, čís. 14, s. 1325–1330. Dostupné online. DOI 10.1016/j.cub.2005.06.040. (anglicky) 
  75. a b CAVALIER-SMITH, Thomas. Protist phylogeny and the high-level classification of Protozoa. European Journal of Protistology. 3. listopad 2004, svazek 39, čís. 4, s. 338–348. Dostupné online [abstrakt, cit. 2009-10-08]. ISSN 0932-4739. DOI 10.1078/0932-4739-00002. (anglicky) 
  76. NOZAKI, Hisayoshi; MARUYAMA, Shinichiro; MATSUZAKI, Motomichi, Takashi Nakada, Syou Kato, Kazuharu Misawa. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Molecular Phylogenetics and Evolution. 19. srpen 2009, svazek 53, čís. 3, s. 872–880. DOI 10.1016/j.ympev.2009.08.015. (anglicky) 
  77. KIM, Eunsoo; HARRISON, James W.; SUDEK, Sebastian, Meredith D. M. Jones, Heather M. Wilcox, Thomas A. Richards, Alexandra Z. Worden, John M. Archibald. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. S. 1496–1500. PNAS (Proceedings of the National Academy of Sciences of the United States of America) [online]. 4. leden 2011 [cit. 2011-01-26]. Svazek 108, čís. 4, s. 1496–1500. Dostupné v archivu pořízeném z originálu dne 2015-09-24. PDF [47]. ISSN 0027-8424. DOI 10.1073/pnas.1013337108. (anglicky) 
  78. KAWACHI, Masanobu; NAKAYAMA, Takuro; KAMIKAWA, Ryoma, et al. Rappemonads are haptophyte phytoplankton. S. P2395-2403.E4. Current Biology [online]. 2021-03-26 [cit. 2021-08-17]. Svazek 31, čís. 11, s. P2395-2403.E4. Dostupné online. Dostupné také na: [48]. ISSN 0960-9822. DOI 10.1016/j.cub.2021.03.012. PMID 33773100. (anglicky) 
  79. YABUKI, Akinori; CHAO, Ema E.; ISHIDA, Ken-Ichiro, CAVALIER-SMITH Thomas. Microheliella maris (Microhelida ord. n.), an Ultrastructurally Highly Distinctive New Axopodial Protist Species and Genus, and the Unity of Phylum Heliozoa. S. 356–388. Protist [online]. 7. prosinec 2011. Svazek 163, čís. 3, s. 356–388. Abstrakt. Dostupné online. ISSN 1434-4610. DOI 10.1016/j.protis.2011.10.001. (anglicky) 
  80. TIKHONENKOV, Denis V.; JAMY, Mahwash; BORODINA, Anastasia S.; BELYAEV, Artem O.; ZAGUMYONNYI, Dmitry G.; PROKINA, Kristina I.; MYLNIKOV, Alexander P. On the origin of TSAR: morphology, diversity and phylogeny of Telonemia. S. 210325. Open Biology [online]. The Royal Society Publishing, 2022-03 [cit. 2023-02-02]. Roč. 12, čís. 3, s. 210325. Dostupné online. Dostupné také na: [49]. ISSN 2046-2441. DOI 10.1098/rsob.210325. PMID 35291881. (anglicky) 
  81. GAJADHAR, Alvin A.; MARQUARDT, William C.; HALL, Roger, John Gunderson, Edgardo V. Ariztia-Carmona, Mitchell L. Sogin. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Molecular and Biochemical Parasitology. Březen 1991, svazek 45, čís. 1, s. 147–154. Dostupné online [abstrakt, cit. 2009-10-08]. ISSN 0166-6851. DOI 10.1016/0166-6851(91)90036-6. (anglicky) 
  82. BURKI, Fabien; PAWLOWSKI, Jan. Monophyly of Rhizaria and Multigene Phylogeny of Unicellular Bikonts. Molecular Biology and Evolution. 7. červenec 2006, roč. 23, čís. 10, s. 1922–1930. Dostupné online [cit. 2009-10-08]. ISSN 1537-1719. DOI 10.1093/molbev/msl055. (anglicky) 
  83. PAWLOWSKI, Jan; BURKI, Fabien. Untangling the Phylogeny of Amoeboid Protists. Journal of Eukaryotic Microbiology. 11. listopad 2008, svazek 56, čís. 1, s. 16–25. Dostupné online [cit. 2009-10-29]. DOI 10.1111/j.1550-7408.2008.00379.x. (anglicky) 
  84. SIERRA, Roberto; PAWLOWSKI, Jan, et al. Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel’s Radiolaria. S. 53–59. Molecular Phylogenetics and Evolution [online]. 29. prosinec 2012. Svazek 67, čís. 1, s. 53–59. Dostupné online. ISSN 1055-7903. DOI 10.1016/j.ympev.2012.12.011. (anglicky) 
  85. YABUKI, Akinori; NAKAYAMA, Takeshi; YUBUKI, Naoji, HASHIMOTO Tetsuo, ISHIDA Ken-Ichiro, INAGAKI Yuji. Tsukubamonas globosa n. gen., n. sp., A Novel Excavate Flagellate Possibly Holding a Key for the Early Evolution in “Discoba”. S. 319–331. Journal of Eukaryotic Microbiology [online]. 13. květen 2011. Svazek 58, čís. 4, s. 319–331. Abstrakt. Dostupné online. ISSN 1550-7408. DOI 10.1111/j.1550-7408.2011.00552.x. (anglicky) 
  86. KAMIKAWA, Ryoma; KOLISKO, Martin; NISHIMURA, Yuki, YABUKI, Akinori; BROWN, Matthew W.; ISHIKAWA, Sohta A.; ISHIDA, Ken-ichiro; ROGER, Andrew J.; HASHIMOTO, Tetsuo; INAGAKI, Yuji. Gene-content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. S. 306–315. Genome Biology and Evolution [online]. 21. leden 2014. Svazek 6, čís. 2, s. 306–315. Dostupné online. PDF [50]. ISSN 1759-6653. DOI 10.1093/gbe/evu015. PMID 24448982. (anglicky) 
  87. LARA, Enrique; CHATZINOTAS, Antonis; SIMPSON, Alastair G. B. Andalucia (n. gen.) — the Deepest Branch Within Jakobids (Jakobida; Excavata), Based on Morphological and Molecular Study of a New Flagellate from Soil. S. 112–120. Journal of Eukaryotic Microbiology [online]. 25. leden 2006 [cit. 2011-01-04]. Svazek 53, čís. 2, s. 112–120. Dostupné online. PDF [51]. ISSN 1550-7408. DOI 10.1111/j.1550-7408.2005.00081.x. (anglicky) 
  88. STAIRS, Courtney W.; ČEPIČKA, Ivan; TÁBORSKÝ, Petr; SALOMAKI, Eric D.; KOLISKO, Martin; PÁNEK, Tomáš; EME, Laura. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. S. 5605–5612. Current Biology [online]. Elsevier Inc., 2021-10-27 [cit. 2022-02-24]. Svazek 31, čís. 24, s. 5605–5612. Dostupné online. Dostupné také na: [52]. ISSN 0960-9822. DOI 10.1016/j.cub.2021.10.010. (anglicky) 
  89. CAVALIER-SMITH, Thomas. The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. S. 1741–1758. International Journal of Systematic and Evolutionary Microbiology [online]. Microbiology Society, 1. listopad 2003. Svazek 53, čís. 6, s. 1741–1758. Dostupné online. ISSN 1466-5034. DOI 10.1099/ijs.0.02548-0. PMID 14657102. (anglicky) 
  90. Excavata na stránkách projektu Tree to Strain
  91. CAVALIER-SMITH, Thomas; CHAO, Ema E.; STECHMANN, Alexandra, Brian Oates, Sergei Nikolaev. Planomonadida ord. nov. (Apusozoa): Ultrastructural Affinity with Micronuclearia podoventralis and Deep Divergences within Planomonas gen. nov.. Protist. 21. říjen 2008, svazek 159, čís. 4, s. 535–562. Dostupné online [abstrakt, cit. 2009-10-08]. ISSN 1434-4610. DOI 10.1016/j.protis.2008.06.002. (anglicky) 
  92. GLÜCKSMAN, Edvard; CAVALIER-SMITH, Thomas, Elizabeth A. Snell, Cédric Berney, Ema E. Chao, David Bass. The Novel Marine Gliding Zooflagellate Genus Mantamonas (Mantamonadida ord. n.: Apusozoa). Protist. Duben 2011, svazek 162, čís. 2, s. 207–221. Dostupné online [abstrakt]. ISSN 1434-4610. DOI 10.1016/j.protis.2010.06.004. (anglicky) 
  93. ZHAO, Sen; BURKI, Fabien; BRÅTE, Jon, KEELING Patrick J., KLAVENESS Dag, SHALCHIAN-TABRIZI Kamran. Collodictyon — An Ancient Lineage in the Tree of Eukaryotes. Molecular Biology and Evolution. 6. leden 2012, svazek 29, čís. 6, s. 1557–1568. Dostupné online [cit. 2012-05-17]. PDF [53]. ISSN 0737-4038. DOI 10.1093/molbev/mss001. (anglicky) 
  94. a b c ZHAO, Sen; SHALCHIAN-TABRIZI, Kamran; KLAVENESS, Dag. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. S. 462–468. Molecular Phylogenetics and Evolution [online]. 23. srpen 2013. Svazek 69, čís. 3, s. 462–468. Dostupné online. ISSN 1055-7903. DOI 10.1016/j.ympev.2013.08.005. PMID 23973893. (anglicky) 
  95. KATZ, Laura A.; GRANT, Jessica; WEGENER PARFREY, Laura, Anastasia Gant, Charles J. O’Kelly, O. Roger Anderson, Robert E. Molestina, Thomas Nerad. Subulatomonas tetraspora nov. gen. nov. sp. is a Member of a Previously Unrecognized Major Clade of Eukaryotes. Protist. 1. červenec 2011, svazek 162, čís. 5, s. 762–773. Dostupné online. ISSN 1434-4610. DOI 10.1016/j.protis.2011.05.002. (anglicky) 
  96. HEISS, Aaron A.; WALKER, Giselle; SIMPSON, Alastair G.B. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity. S. 354–372. European Journal of Protistology [online]. Srpen 2013. Svazek 49, čís. 3, s. 354–372. Dostupné online. ISSN 0932-4739. DOI 10.1016/j.ejop.2013.01.001. (anglicky) 
  97. BROWN, Matthew W.; SPIEGEL, Frederick W.; SILBERMAN, Jeffrey D. Phylogeny of the “Forgotten” Cellular Slime Mold, Fonticula alba, Reveals a Key Evolutionary Branch within Opisthokonta. S. 2699–2709. Molecular Biology and Evolution [online]. 19. srpen 2009. Svazek 26, čís. 12, s. 2699–2709. Dostupné online. PDF [54]. ISSN 1537-1719. DOI 10.1093/molbev/msp185. (anglicky) 
  98. a b ARROYO, Alicia S.; LÓPEZ-ESCARDÓ, David; KIM, Eunsoo; RUIZ-TRILLO, Iñaki; NAJLE, Sebastián R. Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina. S. 1–17. Frontiers in Ecology and Evolution [online]. Frontiers Media S.A., 12. červenec 2018. Svazek 6, čís. 99, s. 1–17. Dostupné online. Dostupné také na: [55]. ISSN 2296-701X. DOI 10.3389/fevo.2018.00099. (anglicky) 
  99. CAVALIER-SMITH, Thomas. Megaphylogeny, Cell Body Plans, Adaptive Zones: Causes and Timing of Eukaryote Basal Radiations. S. 26–33. Journal of eukaryotic microbiology [online]. 14. říjen 2008. Svazek 56, čís. 1, s. 26–33. Dostupné online. PDF [56]. ISSN 1550-7408. DOI 10.1111/j.1550-7408.2008.00373.x. (anglicky) 
  100. GABALDÓN, Toni; VÖLCKER, Eckhard; TORRUELLA, Guifré. On the Biology, Diversity and Evolution of Nucleariid Amoebae (Amorphea, Obazoa, Opisthokonta1. Protist [online]. Elsevier GmbH, 2022-08 [cit. 2022-10-19]. Svazek 173, čís. 4: 125895. Dostupné online. Dostupné také na: [57]. ISSN 1434-4610. DOI 10.1016/j.protis.2022.125895. PMID 35841659. (anglicky) 
  101. a b URRUTIA, Ander; MITSI, Konstantina; FOSTER, Rachel; ROSS, Stuart; CARR, Martin; WARD, Georgia M.; AERLE, Ronny van. Txikispora philomaios n. sp., n. g., a micro-eukaryotic pathogen of amphipods, reveals parasitism and hidden diversity in Class Filasterea. Journal of Eukaryotic Microbiology [online]. John Wiley & Sons, Inc., 2021-11-02 [cit. 2022-02-02]. Roč. 2021: e12875. Online před tiskem. Dostupné online. preprint [58]. preprint [59]. ISSN 1550-7408. DOI 10.1111/jeu.12875. PMID 34726818. (anglicky) 
  102. REYNOLDS, Nicole K.; SMITH, Matthew E.; TRETTER, Eric D.; GAUSE, Justin; HEENEY, Dustin; CAFARO, Matías J.; SMITH, James F., NOVAK, Stephen J.; BOURLAND, William A.; WHITE, Merlin M. Resolving relationships at the animal-fungal divergence: A molecular phylogenetic study of the protist trichomycetes (Ichthyosporea, Eccrinida). S. 447–464. Molecular Phylogenetics and Evolution [online]. 20. únor 2017. Svazek 109, s. 447–464. Dostupné online. Dostupné také na: [60]. ISSN 1055-7903. DOI 10.1016/j.ympev.2017.02.007. PMID 28219758. (anglicky) 
  103. a b c TORRUELLA, Guifré; MENDOZA, Alex de, et al. Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi. S. 2404–2410. Current Biology [online]. 10. září 2015. Svazek 25, čís. 18, s. 2404–2410. Dostupné online. Dostupné také na: [61]. ISSN 0960-9822. DOI 10.1016/j.cub.2015.07.053. PMID 26365255. (anglicky) 
  104. a b c LIU, Hongyue; STEENWYK, Jacob L.; ZHOU, Xiaofan; SCHULTZ, Darrin T.; KOCOT, Kevin M.; SHEN, Xing-Xing; ROKAS, Antonis. A genome-scale Opisthokonta tree of life: toward phylogenomic resolution of ancient divergences. bioRχiv [online]. Cold Spring Harbor Laboratory, 2023-09-21 [cit. 2024-06-17]. Preprint. Dostupné online. DOI 10.1101/2023.09.20.556338. (anglicky) 
  105. a b TIKHONENKOV, Denis V.; MIKHAILOV, Kirill V.; HEHENBERGER, Elisabeth; KARPOV, Sergei A.; PROKINA, Kristina I.; ESAULOV, Anton S.; BELYAKOVA, Olga I. New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals. S. 4500–4509.e5. Current Biology [online]. Cell Press, 2020-11 [cit. 2023-09-04]. Roč. 30, čís. 22, s. 4500–4509.e5. ISSN 1879-0445. DOI 10.1016/j.cub.2020.08.061. PMID 32976804. (anglicky) 
  106. a b ROS-ROCHER, Núria; PÉREZ-POSADA, Alberto; LEGER, Michelle M.; RUIZ-TRILLO, Iñaki. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biology [online]. Royal Society Pub., 2021-02 [cit. 2023-09-04]. Roč. 11, čís. 2. Dostupné online. ISSN 2046-2441. DOI 10.1098/rsob.200359. PMID 33622103. (anglicky) 
  107. Yu Liu; STEENKAMP, Emma T.; BRINKMANN, Henner, Lise Forget, Herve Philippe, B. Franz Lang. Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. S. 1–31. BMC Evolutionary Biology [online]. 25. listopad 2009 [cit. 2009-12-02]. 9 svazek, čís. 272, s. 1–31. Dostupné online. ISSN 1471-2148. DOI 10.1186/1471-2148-9-272. (anglicky) 
  108. ARROYO, Alicia S.; LANNES, Romain; BAPTESTE, Eric; RUIZ-TRILLO, Iñaki. Gene Similarity Networks Unveil a Potential Novel Unicellular Group Closely Related to Animals from the Tara Oceans Expedition. S. 1664–1678. Genome Biology and Evolution [online]. Oxford University Press, 2020-09-01 [cit. 2024-06-17]. Roč. 12, čís. 9, s. 1664–1678. Dostupné online. ISSN 1759-6653. DOI 10.1093/gbe/evaa117. PMID 32533833. (anglicky) 
  109. BALDAUF, Sandra L.; PALMER, Jeffrey D. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proceedings of the National Academy of Sciences of the USA. 15. prosinec 1993, svazek 90, čís. 24, s. 11 558 – 11 562. Dostupné online [PDF, cit. 2009-10-08]. (anglicky) 
  110. RUIZ-TRILLO, Iñaki; ROGER, Andrew J., Gertraud Burger, Michael W. Gray, B. Franz Lang. A Phylogenomic Investigation into the Origin of Metazoa. Molecular Biology and Evolution. 9. leden 2008, roč. 25, čís. 4, s. 664–672. Dostupné online [cit. 2009-10-08]. ISSN 1537-1719. DOI 10.1093/molbev/msn006. (anglicky) 
  111. SHALCHIAN-TABRIZI, Kamran; MINGE, Marianne A.; ESPELUND, Mari, Russell Orr, Torgeir Ruden, Kjetill S. Jakobsen, Thomas Cavalier-Smith. Multigene Phylogeny of Choanozoa and the Origin of Animals. S. 1–7, e2098. PLoS ONE [online]. 7. květen 2008 [cit. 2009-10-08]. Svazek 3, čís. 5, s. 1–7. Dostupné online. PDF [62]. (anglicky) 
  112. SHADWICK, Lora L.; SPIEGEL, Frederick W.; SHADWICK, John D. L., Matthew W. Brown, Jeffrey D. Silberman. Eumycetozoa = Amoebozoa?: SSUrDNA Phylogeny of Protosteloid Slime Molds and Its Significance for the Amoebozoan Supergroup. S. 1–13, e6754. PLoS ONE [online]. 25. srpen 2009 [cit. 2009-10-08]. Svazek 4, čís. 8, s. 1–13. Dostupné online. PDF [63]. (anglicky) 
  113. FIORE-DONNO, Anna Maria; NIKOLAEV, Sergey I.; NELSON, Michaela, Jan Pawlowski, Thomas Cavalier-Smith, Sandra L. Baldauf. Deep Phylogeny and Evolution of Slime Moulds (Mycetozoa). S. 55–70. Protist [abstrakt]. 5. srpen 2009 [cit. 2010-01-05]. Svazek 161, čís. 1, s. 55–70. Dostupné online. ISSN 1434-4610. DOI 10.1016/j.protis.2009.05.002. (anglicky) 
  114. LAHR, Daniel J. G.; GRANT, Jessica, NGUYEN Truc, Jian Hua Lin, KATZ Laura A. Comprehensive Phylogenetic Reconstruction of Amoebozoa Based on Concatenated Analyses of SSUrDNA and Actin Genes. S. 1–17, e22780. PLoS ONE [online]. 28. červenec 2011. Svazek 6, čís. 7, s. 1–17. Dostupné online. PDF [64]. ISSN 1932-6203. DOI 10.1371/journal.pone.0022780. (anglicky) 
  115. CAVALIER-SMITH, Thomas; FIORE-DONNO, Anna Maria; CHAO, Ema E., Kudryavtsev, Alexander; Berney, Cédric; Snell, Elizabeth A.; Lewis, Rhodri. Multigene phylogeny resolves deep branching of Amoebozoa. Molecular Phylogenetics and Evolution. 20. srpen 2014, svazek 83, s. 293–304. Dostupné online. ISSN 1055-7903. DOI 10.1016/j.ympev.2014.08.011. PMID 25150787. (anglicky) 
  116. a b c BROWN, Matthew W.; SHARPE, Susan C.; SILBERMAN, Jeffrey D., HEISS, Aaron A.; LANG, B. Franz; SIMPSON, Alastair G. B.; ROGER, Andrew J. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. S. 1–9. Proceedings of the Royal Society B [online]. 28. srpen 2013. Svazek 280, čís. 1769:20131755, s. 1–9. Dostupné online. PDF [65]. ISSN 1471-2954. DOI 10.1098/rspb.2013.1755. PMID 23986111. (anglicky) 
  117. CAVALIER-SMITH, Thomas; CHAO, Ema E. Phylogeny and Evolution of Apusomonadida (Protozoa: Apusozoa): New Genera and Species. Protist. 27. květen 2010, svazek 161, čís. 4, s. 549–576. Dostupné online [abstrakt]. ISSN 1434-4610. DOI 10.1016/j.protis.2010.04.002. (anglicky) 
  118. a b CAVALIER-SMITH, Thomas. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. S. 297–354. International Journal of Systematic and Evolutionary Microbiology [online]. Březen 2002 [cit. 2009-10-08]. Svazek 52, čís. 2, s. 297–354. Dostupné online. ISSN 1466-5034. DOI 10.1099/ijs.0.02058-0. PMID 11931142. (anglicky) 
  119. CAVALIER-SMITH, Thomas; LEWIS, Rhodri; CHAO, Ema E., OATES Brian, BASS David. Morphology and Phylogeny of Sainouron acronematica sp. n. and the Ultrastructural Unity of Cercozoa. S. 591–620. Protist [abstrakt]. 21. říjen 2008 [cit. 2010-01-07]. Svazek 159, čís. 4, s. 591–620. Dostupné online. ISSN 1434-4610. DOI 10.1016/j.protis.2008.04.002. (anglicky) 
  120. a b DERELLE, Romain; LANG, B. Franz. Rooting the Eukaryotic Tree with Mitochondrial and Bacterial Proteins. Molecular Biology and Evolution. 1. prosinec 2011, svazek 29, čís. 4, s. 1277–1289. Dostupné online [abstrakt, cit. 2012-03-21]. ISSN 0737-4038. DOI 10.1093/molbev/msr295. (anglicky) 
  121. FRITZ-LAYLIN, Lillian K.; PROCHNIK, Simon E., Michael L. Ginger, Joel B. Dacks, Meredith L. Carpenter, Mark C. Field, Alan Kuo, Alex Paredez, Jarrod Chapman, Jonathan Pham, Shengqiang Shu, Rochak Neupane, Michael Cipriano, Joel Mancuso, Hank Tu, Asaf Salamov, Erika Lindquist, Harris Shapiro, Susan Lucas, Igor V. Grigoriev, W. Zacheus Cande, Chandler Fulton, Daniel S. Rokhsar, Scott C. Dawson. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. S. 631–642. Cell [online]. 4. březen 2010 [cit. 2010-03-08]. Svazek 140, čís. 5, s. 631–642. Dostupné online. PDF [66]. DOI 10.1016/j.cell.2010.01.032. (anglicky) 
  122. PITTIS, Alexandros A.; GABALDÓN, Toni. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. S. 101–104. Nature [online]. 3. únor 2016. Svazek 531, čís. 7592, s. 101–104. Dostupné online. ISSN 1476-4687. DOI 10.1038/nature16941. (anglicky) 
  123. a b DERELLE, Romain; TORRUELLA, Guifré; KLIMEŠ, Vladimír; BRINKMANN, Henner; KIM, Eunsoo; VLČEK, Čestmír; LANG,, B. Franz, ELIÁŠ, Marek. Bacterial proteins pinpoint a single eukaryotic root. S. E693–E699. Proceedings of the National Academy of Sciences USA (PNAS) [online]. 17. únor 2015. Svazek 112, čís. 7, s. E693–E699. Dostupné online. ISSN 1091-6490. DOI 10.1073/pnas.1420657112. (anglicky) 
  124. HE, Ding; FIZ-PALACIOS, Omar; FU, Cheng-Jie; FEHLING, Johanna; TSAI, Chun-Chieh; BALDAUF, Sandra L. An Alternative Root for the Eukaryote Tree of Life. S. 465–470. Current Biology [online]. 17. únor 2014. Svazek 24, čís. 4, s. 465–470. Dostupné online. ISSN 0960-9822. DOI 10.1016/j.cub.2014.01.036. (anglicky) 
  125. KARNKOWSKA, Anna; VACEK, Vojtěch; ZUBÁČOVÁ, Zuzana; TREITLI, Sebastian C.; PETRŽELKOVÁ, Romana; EME, Laura; NOVÁK, Lukáš, ŽÁRSKÝ, Vojtěch; BARLOW, Lael D.; HERMAN, Emily K.; SOUKAL, Petr; HROUDOVÁ, Miluše; DOLEŽAL, Pavel; STAIRS, Courtney W.; ROGER, Andrew J.; ELIÁŠ, Marek; DACKS, Joel B.; VLČEK, Čestmír; HAMPL, Vladimír. A Eukaryote without a Mitochondrial Organelle. S. 1274–1284. Current Biology [online]. 12. květen 2016. Svazek 26, čís. 10, s. 1274–1284. Dostupné online. ISSN 0960-9822. DOI 10.1016/j.cub.2016.03.053. (anglicky) 
  126. ŽÁRSKÝ, Vojtěch; TACHEZY, Jan; DOLEŽAL, Pavel. Tom40 is likely common to all mitochondria. S. R479–R481. Current Biology [online]. Elsevier Inc., 19. červen 2012. Svazek 22, čís. 12, s. R479–R481. Dostupné online. ISSN 0960-9822. DOI 10.1016/j.cub.2012.03.057. (anglicky) 
  127. ARISUE, Nobuko0; HASHIMOTO, Tetsuo. Root of the Eukaryota Tree as Inferred from Combined Maximum Likelihood Analyses of Multiple Molecular Sequence Data. Molecular Biology and Evolution. 20. říjen 2004, roč. 22, čís. 3, s. 409–420. Dostupné online [cit. 2009-10-08]. ISSN 1537-1719. DOI 10.1093/molbev/msi023. (anglicky) 
  128. AL JEWARI, Caesar; BALDAUF, Sandra L. An excavate root for the eukaryote tree of life. Science Advances [online]. American Association for the Advancement of Science, 2023-04-26 [cit. 2023-05-18]. Roč. 9, čís. 17. Dostupné online. ISSN 2375-2548. DOI 10.1126/sciadv.ade4973. PMID 37115919. (anglicky) 
  129. CAVALIER-SMITH, Thomas. Flagellate megaevolution: the basis for eukaryote diversification. In: Green JC, Leadbeater BSC. The Flagellates. London: Taylor and Francis, 2000. S. 361–390. (anglicky)
  130. ROGOZIN, Igor B.; BASU, Malay Kumar; CSÜRÖS, Miklós, KOONIN, Eugene V. Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes. S. 99–113. Genome Biology and Evolution [online]. 25. květen 2009 [cit. 2010-07-21]. Svazek 1, s. 99–113. Dostupné v archivu pořízeném dne 2010-08-20. pdf [67]. ISSN 1759-6653. DOI 10.1093/gbe/evp011. (anglicky) 
  131. KATZ, Laura A.; GRANT, Jessica R.; WEGENER PARFREY, Laura, GORDON BURLEIGH J. Turning the Crown Upside Down: Gene Tree Parsimony Roots the Eukaryotic Tree of Life. S. 653–660. Systematic Biology [online]. 14. únor 2012. Svazek 61, čís. 4, s. 653–660. Dostupné online. ISSN 1076-836X. DOI 10.1093/sysbio/sys026. (anglicky) 
  132. CERÓN-ROMERO, Mario A; FONSECA, Miguel M; DE OLIVEIRA MARTINS, Leonardo; POSADA, David; KATZ, Laura A. Phylogenomic Analyses of 2,786 Genes in 158 Lineages Support a Root of the Eukaryotic Tree of Life between Opisthokonts and All Other Lineages. Genome Biology and Evolution [online]. Oxford University Press, 2022-08-03 [cit. 2022-09-22]. Svazek 14, čís. 8: evac119. Dostupné online. Dostupné také na: [68]. ISSN 1759-6653. DOI 10.1093/gbe/evac119. PMID 35880421. (anglicky) 
  133. CAVALIER-SMITH, Thomas; CHAO, Ema E. -Y. Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution. Journal of Molecular Evolution. 1. leden 2003, svazek 56, čís. 5, s. 540–563. Dostupné online [abstrakt, cit. 2009-10-08]. ISSN 1432-1432. DOI 10.1007/s00239-002-2424-z. PMID 12698292. (anglicky) 

Externí odkazy