In matematica, e più precisamente in algebra lineare, la matrice di trasformazione, anche detta matrice associata ad una trasformazione o matrice rappresentativa dell'operatore rispetto alle sue basi, è la matrice che rappresenta una trasformazione lineare fra spazi vettoriali rispetto ad una base per ciascuno degli spazi.

Fissata una base per il dominio e una per il codominio, ogni trasformazione lineare è descrivibile tramite una matrice nel modo seguente:

dove è il vettore colonna delle coordinate di un punto del dominio rispetto alla base del dominio e è il vettore colonna delle coordinate dell'immagine, mentre il prodotto è il prodotto righe per colonne.

Definizione

[modifica | modifica wikitesto]

Siano e due spazi vettoriali su un campo di dimensione finita, e una applicazione lineare. Siano:

due basi rispettivamente per e .

La matrice associata a nelle basi e è la matrice avente nella -esima colonna le coordinate del vettore rispetto alla base :[1]

dove la colonna è l'immagine dell'-esimo vettore della base di partenza scritta attraverso le coordinate rispetto alla base di arrivo .[2]

Gli elementi di sono quindi tali che:

e si ha:

In modo equivalente si può scrivere:

Dove le parentesi quadre indicano le coordinate rispetto alla base relativa.

La corrispondenza biunivoca definita fra applicazioni lineari e matrici è un isomorfismo fra lo spazio vettoriale delle applicazioni lineari da in e lo spazio delle matrici :[3]

Tale isomorfismo dipende dalle basi scelte per entrambi gli spazi.

Composizione di applicazioni lineari

[modifica | modifica wikitesto]

Nella rappresentazione di applicazioni attraverso le matrici la composizione di funzioni si traduce nell'usuale prodotto fra matrici. Si considerino le applicazioni lineari:

Siano e le rispettive matrici rappresentative rispetto a tre basi dei relativi spazi. Si ha:

ovvero la matrice associata alla composizione è il prodotto delle matrici associate a e a .[4]

Dette , basi rispettivamente di e si ha:

Endomorfismi

[modifica | modifica wikitesto]
Endomorfismo rappresentato da una matrice. Il determinante della matrice è -1: questo implica che l'endomorfismo è invertibile e inverte l'orientazione del piano. L'angolo orientato infatti viene mandato nell'angolo con orientazione opposta.

In presenza di un endomorfismo è naturale scegliere la stessa base in partenza ed in arrivo. Sia tale base e sia la matrice associata a rispetto alla base . Si ha allora:[3]

In particolare, è una matrice quadrata .

Molte proprietà dell'endomorfismo possono essere lette attraverso la matrice rappresentativa:

Altre proprietà più complesse delle applicazioni lineari, come la diagonalizzabilità, possono essere più facilmente studiate attraverso la rappresentazione matriciale.

Matrici simili

[modifica | modifica wikitesto]

Due matrici quadrate e sono simili quando esiste una matrice invertibile tale che:[5][6]

In particolare, la matrice identità e la matrice nulla sono simili solo a se stesse.

Le matrici simili rivestono notevole importanza, dal momento che due matrici simili rappresentano lo stesso endomorfismo rispetto a due basi diverse.[7] Se e sono due basi dello spazio vettoriale , dato un endomorfismo su si ha:

La matrice è la matrice di cambiamento di base dalla base alla base .

Esempi

[modifica | modifica wikitesto]
Analogamente per una rotazione in senso orario attorno all'origine la funzione è definita da e ed in forma matriciale corrisponde alla trasposta della precedente matrice, ovvero:

Note

[modifica | modifica wikitesto]
  1. ^ S. Lang, Pag. 106.
  2. ^ Hoffman, Kunze, Pag. 87.
  3. ^ a b Hoffman, Kunze, Pag. 88.
  4. ^ Hoffman, Kunze, Pag. 90.
  5. ^ S. Lang, Pag. 115.
  6. ^ Hoffman, Kunze, Pag. 94.
  7. ^ Hoffman, Kunze, Pag. 92.

Bibliografia

[modifica | modifica wikitesto]

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica