Thorium

[edit]

I've listed this article for peer review because I'd like to take it to FA. I worked on it two years ago to GA-level and I would like to know what is still needed.

Thanks, Double sharp (talk) 04:53, 25 June 2016 (UTC)[reply]

Comments by Dunkleosteus77

[edit]

Comments below   User:Dunkleosteus77 |push to talk  18:00, 30 June 2016 (UTC):[reply]

Tip: to highlight duplicate links, you can install a script (which actually means copying a small amount of text to a Wiki page), see Wikipedia:WikiProject_Birds/Tools--R8R (talk) 10:26, 1 July 2016 (UTC)[reply]

Review by R8R

[edit]

I'll review the article.--R8R (talk) 13:25, 3 July 2016 (UTC)[reply]

Disclaimer: the review below is my opinion on what I would do to improve the article. Possibly there are other directions. Mine, however, eventually yields a great article easy to read by readers (as I remember from comments by readers; we used to have a system for collecting readers' comments, where did it go?)

CharacteristicsBulk properties
[edit]

(I can't help but think I'd want to skip the subsection altogether. More paragraph breaks and a clearer structure could solve this problem.)

However, I am far from satisfied with this section as a reader (though it is becoming a little better, sure). I gave my initial ideas on reading the section, but I'd want to do more (similarly, I am not satisfied with Lead#Physical, except I haven't yet thought in detail on what I should fill it with). I'll skip it for now, because (unfortunately) I have not yet made my formula for a good section on physical macro-scale properties. I'll get back to it in the end of the review.--R8R (talk) 21:20, 3 July 2016 (UTC)[reply]

I will once again suggest to separate this [former Chemical subsection] from the rest of the section. You have a subtitle "Physical [properties]" and then you have a subtitles "Atomic" and "Isotopes", and both of these describe physical properties as well! Except what you have under the title of "Physical" describes bulk properties of thorium metal, and the other two describe atomic-scale physics, discussing electrons and nuclei, correspondingly. This would all go well under the title "Physical properties" (current "Physical" would best be called "Bulk"), and compounds would be described in a large section on chemistry (which does deserve a separate section in an article on what we call a chemical element).

How's the current arrangement? Double sharp (talk) 16:14, 3 July 2016 (UTC)[reply]
Fine! Looks fresh and very suitable for thorium. Isotopes as their own section are just fine for Th.--R8R (talk) 21:20, 3 July 2016 (UTC)[reply]

I planned to mention the metallic radius trend as well, but I decided against it as it's too complicated. You have to take into account that not only are the number of delocalised electrons making a difference, but also the differing structures (12-coordinated for Th, but 10-coordinated for Pa and downright irregular for U, Np, and Pu). This, I think, would be better left to the main article on the actinides. Double sharp (talk) 14:42, 16 July 2016 (UTC)[reply]


I have rethought this section and its organization and will write my ideas soon.--R8R (talk) 00:32, 14 August 2016 (UTC)[reply]

@Double sharp: I liked it when you immediately reacted to my comments; I felt the article was swiftly improving and getting closer and closer to its FAC. Yet response to my comments lost its momentum and can't get it back. Will it make sense for me to finish my review? The other remaining points directly rely on your actions (check list at the bottom of this page). I'll try to write down my ideas tonight but there won't be much left for me to do after that.--R8R (talk) 15:56, 16 August 2016 (UTC)[reply]

Comments as promised.

First of all, we should probably leave the introductory para as is and be fine with it. It's okay, actually.

The next thing to come to my mind would be allotropy. Allotropy actually greatly affects what you describe thereafter (carbon being graphite and diamond being the best example of this). You say something like "thorium only has one allotrope, which is fcc, and it remains fcc until it'a as hot as ... deg C (... deg F, ... K)" or the like. You can probably also describe the stuff like thermal expansion (which is related anyway to lattice parameters, which should also mention) here. Come to think of that, that doesn't exactly fit the title, but then again, make title follow your story and not vice versa. Maybe go with "Mechanical properties"? Then I noticed you had a table; this can be converted into text.\

Hmm, carbon (and tin) are kind of special cases here. Everyone knows graphite from pencils and diamonds from overpriced jewellery; the β→α transition in tin is pretty well-known (tin pest and bursting organ pipes). But of thorium's two allotropes, only the room-temperature one really matters to the average chemist. Does anyone care about the low-temperature hexagonal close-packed allotrope of sodium, for instance? Also, these transition temperatures change greatly with impurities. Double sharp (talk) 10:31, 31 August 2016 (UTC)[reply]
Why wouldn't you say that? "At r.t., thorium is <some form>. Its parameters are blah blah blah. On extreme cooling, it forms a <another form> form, but nobody really cares. Impurities greatly affect allotropy of thorium: example, example."

Then follows a para with stats like density, mp, bp. It would be good to explain why thorium has high values of these paramenters (and this is crucially important). Bulk modulus suits here as well.

I might do a solution like we did at Pb for this, explaining how the [Rn]6d27s2 configuration leads to all this. This is an interesting one. I'd have automatically expected covalent bonding on top of metallic bonding to be the reason, like W, but that can't be right because Th doesn't have a high tensile strength (which would also be raised like W). Didn't I also just say in the article that the reason was because there wasn't much 5f/6d hybridisation in Th (unlike what you get in U), which leads to directional bonds instead of non-directional metallic bonding? Double sharp (talk) 10:31, 31 August 2016 (UTC)[reply]

"Thorium can also form alloys with many other metals." two questions. 1) is it not true for all metals? 2) if you want to specify thorium solves/is solved in other metals and doesn't form copper-lead-like alloys (if this is even the case), do so. Also, the amount of info on this is inadequate. If people actually alloy with anything, then you need more (solubility in metals, for example). If they don't, then a general note in the intro para should be enough.--R8R (talk) 13:37, 17 August 2016 (UTC)[reply]

Yes, people actually do this. Adding small quantities of Th to Mg metal improves its mechanical strength (ref from Gmelin, though I have to wonder how common this use is today). Th-Al alloys have been suggested as a way to store Th in Th reactors. You get eutectics with Cr and U. Th does not really dissolve in other metals except its "little sister" Ce. (Will add!) Double sharp (talk) 10:37, 31 August 2016 (UTC)[reply]
Isotopes
[edit]

I'll continue from here.--R8R (talk) 21:20, 3 July 2016 (UTC)[reply]

As general advice, I'll suggest paras a little shorter when possible.

[1] -- by the way, I like how you said "its half-life is so long that its decay is negligible even over geological timespans" in a note; except why is geology important here?

That's about Bi. The idea was that the decay of Bi is negligible, so there is about as much Bi left as there was at the formation of the Solar System. However, with Th and U, we know that what we have left is but a lower fraction of what we had 4.5 billion years ago. Double sharp (talk) 07:20, 4 July 2016 (UTC)[reply]
I got it. :) I just liked that new way to describe how long its half-life is. This bothers me every time I have to say smth. about what elements are stable, because Bi is practically stable, but theoretically not! It's certainly better than "super-long" or "so long it can be stable for any purpose" and maybe even a little better than "many orders of magnitude longer than the age of the Universe."

In general, a nice section.--R8R (talk) 21:55, 3 July 2016 (UTC)[reply]

Each time I think "you're [that is, you, DS] doing doing great job, I can stop now," there's also something else to improve. That's good for the article, though. :)

otherwise the section looks great! except a few comments are still waiting to be completed (like that IUPAC one).--R8R (talk) 13:50, 4 July 2016 (UTC)[reply]

Regarding exactly what happens beyond Bi: here's my totally-not-expert guess at a bird's-eye-view of the nuclides chart. If you look, alpha decay starts to infect the light isotopes of Te–Xe, and then it assaults some of the early lanthanides (all "stable" isotopes of Sm and Eu should undergo it). Then it sneaks up at the proton drip line in the 5d transition metals, and its reign rapidly expands until the magic numbers can no longer save you past Bi, and at Po it erupts and takes over, driving out poor electron capture. Then if you look at the lines of beta and alpha stability, you see the horrible truth: they diverge from each other past the magic number effects culminating at Pb. So if you look at 232Th and 238U, they are actually close to the heaviest isotopes of these elements we know (238Th and 242U). They get a magic number boost, but everything around them dies quickly of beta emission. Then we face another attack on the beta-stability line by spontaneous fission from 250Cm onward, and the island comes to an abrupt halt. (I may be totally wrong about this.) Double sharp (talk) 14:28, 4 July 2016 (UTC)[reply]

It's the position I would stand on, but I won't argue as long as you're confident in your choice.--R8R (talk) 15:49, 1 September 2016 (UTC)[reply]
History
[edit]

I'll continue from here.--R8R (talk) 13:52, 4 July 2016 (UTC)[reply]

Isotopes has been done pretty fast (and I think we have a quite good section as a result), but this relied on two factors: first, it already had most of the info and second, you are quite familiar with that topic. We'll probably lack either one here. Luckily, I've had my time to think how to improve this section and make it a showcase.

This is the best section to read and write because most terms it operates with are easy to understand: take a mineral, no sign of what we had known before, industry and factories, etc. Any reader should get this one easily. As a writer, I see my job in that the text is interesting to read for a layman and that it is both interconnected and connected with other sections. Physical characteristics, chemistry, occurrence, history, uses---all of these are very interrelated and tell the story of a single element; when that interrelation is underlined, the text is interesting to read: the reader sees some conclusions, the text makes him think a little (but not too much so most people aren't scared away). That's why sometimes you need to explain some terms that may seem easy to you in a footnote, for example. Maybe you'll get them into learning something else on the matter. At best, they should leave after reading your article feeling smart. If you got that, that your job is very well done and people will want that translated into Spanish ;)

This, again, relies on two important principles: introducing reader into some possibly unknown before concepts (they may get interested and do further research themselves) and interconnections within the text (so the reader sees why A follows from B, which is sometimes quite obvious, but most people don't know something or have never given it a deep thought, or were just missing something obvious. If the reader understands the logical implications, congrats, well done). (I rarely actually think in such terms, but I think that's what my writing breaks down to. Maybe I forgot something as important; this is an improvised comment.)

Now, back to this section. On reading it, I see lots of potential far from achieved. The part on radioactivity is related to Isotopes, the part on uses is related to Uses, categorization is related to chemistry, etc. Also, these side stories are interrelated: most obviously, radioactivity has affected the uses of the element.

The section used to have two subtitles: Discovery and After discovery (was called something else; doesn't matter what, though). This reflects a problem within the text: it clearly falls into two parts, which didn't even rely on each other. Most interestingly, radioactivity, uses, and categorization weren't (still aren't!) even put into a straight relationship, while they have been affected by each other. We're going to improve that.

(And I'll leave it here for a while. Hopefully I'll continue soon/tomorrow.)--R8R (talk) 22:05, 4 July 2016 (UTC)[reply]

As a general note, I strongly suggest the story goes chronologically, not divided into sub-topics. Something like "erroneous discovery--actual discovery--Mendeleev--industry--radioactivity--changes in industrial demand for thorium--Seaborg--atomic weapons--nuclear power," except there could be intermediate events of lower significance.

This will require some research :( if I have time during the weekend, I'll try to research along.

The first para is okay, but that's it. I re-read ununseptium#History for inspiration, and yes, there it was!

I'll leave it here for now. As a general note, try to provide as many details as you can. You'll lose ones you won't need anyway.--R8R (talk) 19:58, 5 July 2016 (UTC)[reply]

The section is now in a good shape. Two things I'm bothered with are: 1) we don't cover the phaseout of Th in non-nuclear uses well, and 2) we completely neglect nuclear weapons and reactors. But we'll remember these are missing and I'll move to the next section for now, supposing these will be fixed later.

That 2006 source says that the phaseout of Th in non-radioctivity-related uses intensified in the "last decade." I am genuinely interested why only in the nineties? Radioactivity and its effects on health have been known for a few decades by that moment. Radium girls won their first case in 1928, for example.--R8R (talk) 16:13, 20 July 2016 (UTC)[reply]

Here's how I would want to organize the info on the phaseout: I'd say in the para about 1885 nothing about radioactivity yet (we introduce the reader into radioactivity later); then, when we do introduce the reader into radioactivity, add at the end of that para than thorium yet remained in use, but now hazards were known (can you find a ref to say they were known by the thirties?) and a search for safer replacements began. And then a separate para located with accordance with general timeline that Th was finally phased out in the nineties because there were decent alternatives now.--R8R (talk) 18:20, 23 July 2016 (UTC)[reply]

also, @Double sharp: as you haven't appeared here for a while. I'm done with my first go through the article; I am now left to do what I skipped and marked as skipped.--R8R (talk) 20:59, 8 August 2016 (UTC)[reply]

Occurrence
[edit]

I haven't actually read the section yet, but there's a comment I want to give out right away.

I'd been thinking about it for some time until I realized the best order of section generally is: Physical (usually with two subsections, Bulk and Isotopes, which separate sections here; this makes no difference) -- Chemical -- Occurrence -- History -- Production -- Uses -- Bio/Precautions. Physical is the most general section of all, and it may help explain we'll read later. Then chem, also general and related to phys; then occurrence (which will benefit from the context by Isotopes for formation/stars and Chem for terrestrial occurrence). Then history, which probably will benefit from occurrence. Then production, usually related to history. Then Uses (makes sense to put those directly after Production). And then Bio as a great way to end the article. (I also think that the current Chem is too large, but I'll come to that later.)--R8R (talk) 12:32, 19 July 2016 (UTC)[reply]

One comment specific for this section: I suggest making this section divided into two parts, Formation/In space and On Earth. The first one can tell how Th was formed, in what stars can be found, etc. The second one can start off with Goldschmidt and then move to terrestrial occurrence. I tried that in fluorine and lead, and it worked both times. Now the content looks not structured well, and this should line things up.--R8R (talk) 21:09, 19 July 2016 (UTC)[reply]

Another general comment: there are many nice facts in this article (like really nice) that are not really related to thorium. I first noticed that when I saw there is note [x]. X is the 24th letter in the English alphabet. There are notes which provide superfluous info, as cool as it is. (I'll review notes separately later.) This is also sometimes the case for the prose part: you add cool facts, but then they distract you from the main story and you have to re-concentrate on it again. (Again, this is a general comment; I am not sitting in front of a computer and thus it's difficult to search for examples. I'll try to drop a word in ten hours or so.--R8R (talk) 10:34, 21 July 2016 (UTC)[reply]

I've got another spare minure: here are some comments.

Chem
[edit]

This section is so long. So long.--R8R (talk) 10:58, 21 July 2016 (UTC)[reply]

Part of the problem is the opening, which is where I am trying to set the stage for the properties of Th, but instead ends up rambling all over the place now that I look at it. Similarly to the way you give an introductory primer on Pb in that article, I would think that the most important aspects that should be taken away by the reader about Th's chemistry are (1) it is practically always in the +4 state, giving away all four valence electrons, and acts as a hard acid like a typical highly-charged cation; this is mitigated by (2) it is a large cation, leading to high coordination numbers and varied geometry (e.g. 11-coordinated nitrate, 10-coordinated oxalate, 14-coordinated borohydride).
I could go a little further: for example, (1) happens for Th but not Ce because 5f is relativistically destabilised more than 4f. But these two are the main things that I would say would count as a brief introduction to Th's personality. (I would still note that Th, U, and Pu are quite approachable, unlike the other actinides with their murderous self-destructive urges, which accounts for the differing knowledge of their chemistry.) There are a few chemical trends across the actinides (e.g. increasing reactivity) but since Th is the first of them, it's not so relevant: in any case Th is already reactive enough to tarnish in air, so the only difference with the later ones is how quickly this happens. (Ac does not conform to that trend at all.) Double sharp (talk) 16:09, 21 July 2016 (UTC)[reply]
I would split the overview for the main Th article into inorganic and organomteallic compounds after this intro. Then I would simply write that the binary compounds can mostly be prepared just by direct reaction from Th and the nonmetal you want upon heating. The most useful are with B, C, N, and Si, which are chemically stable and refractory and hence are good choices for nuclear fuels. Then thoria needs a whole paragraph to itself. Halides can all be lumped in one paragraph, with a brief note regarding how ThF4 is different from the other three, and the fact that the lower iodides are electrides.
I don't think we need to mention the usual spectroscopic stuff because Th4+ is basically always colourless – though I'll keep it in mind for Ce4+ in the Ce article, where I need to explain why it is orange (metal→ligand charge transfer). The hydroxide and its decomposition can be mentioned when covering (1) in the opening paragraph. (Do we need to mention the false Th3+? Or just make it a note?)
Finally organometallic notes that this is focused on cyclopentadienyls and cyclooctatetraenyls (mention thorocene, it's the easiest to explain), and say that 5f involvement means significant covalent character (hence this is the only chance to get to the +3 and +2 states stably). Apart from this, the chemistry is poorly known (no known structure for tetrabenzylthorium, unsubstituted tetramethylthorium not even known). How does this proposed shortened version sound? Double sharp (talk) 16:26, 21 July 2016 (UTC)[reply]
I see what I would want to do, but let's get to it after we're done with Occurrence, okay?--R8R (talk) 17:30, 21 July 2016 (UTC)[reply]

I wanted to start off with something like "I'm copying anything we have to a new subarticle, compounds of thorium, and now we can think fresh." But you already did that :) great

My idea to write the section on chemistry generally focuses on subsections, ordered approximately as follows: electronic config and properties of a singular atom--reactivity--oxidation state 1--2--3--organometallic chemistry. I think we need to move from regular section where we have subsections for the oxide, halides, etc.: this is available in more appropriate corresponding articles and we're talking about the element, so we need to focus on the element and its behavior (electrons, reactivity, ions). I think Lead#Chemical characteristics is good at this, keeping the size of the section not too inflated. Okay, the dioxide is a big deal and we can describe it in short, but not every halide, carbide, nitrite, etc. I see you say thorium has a great chemistry of complexes: if so, adding a short subsection on this (1--2 paras) may be a good idea. I'd mention radiolysis before any subheaders and put nothing else there. Should look interesting to read. Also, try to add these subheaders.--R8R (talk) 20:31, 22 July 2016 (UTC)[reply]

How is it now? Double sharp (talk) 15:06, 23 July 2016 (UTC)[reply]
I gave it a very brief look. Much, much better, though I see potential for improvement and detailed reading is yet to follow. More on this in two or three hours.--R8R (talk) 16:32, 23 July 2016 (UTC)[reply]

I gave it a deep breath to think if anything's missing and I still like it.--R8R (talk) 19:05, 23 July 2016 (UTC)[reply]

Production
[edit]

One major aspect this section is neglecting is: who makes thorium? we get to learn how thorium is made, but not by whom exactly. I want to know the companies (if available; I got the names of the 11 companies making fluorine gas in Ullmann, for example, but what if only, say, three companies produce thorium?), countries, tonnage, etc.

There is not that much demand for Th, so companies do not make it as the main product: this must be why I didn't find any listings. The meagre quantities we do have are made as by-products of the production of Ln and U. Added some extra information regarding countries and tonnage. Double sharp (talk) 07:28, 29 July 2016 (UTC)[reply]
It would still be cool to add such a basic description in the beginning of the section. I see you have the info, I just think it'd be better to move it up the text. by the way, here are comments re that para:
  • " Half of this thorium produced is used in gas mantles." belongs to a different section
  • "Nevertheless, production could easily be increased, and probably would be" second conditional? so there are few chances of that?
  • "Present knowledge of the distribution of thorium resources is poor because of the relatively low-key exploration efforts arising out of insignificant demand. India is believed to possess the largest supply of thorium in the world, making up almost half of world reserves, but not even a thousandth of these reserves have been extracted.[98]" belongs to another section--R8R (talk) 21:49, 31 July 2016 (UTC)[reply]

Not ready for an actual review today, sorry. But one question bothers me: please explain here the oxidation states in "thorium diphosphate (Th(PO4)2)"

This was copied from actinide, but I think there is a misunderstanding here that I didn't notice in 2014 when I copied it over. Diphosphate does not mean two PO3−
4
anions; it refers to the pyrophosphate anion P
2
O4−
7
. Indeed ThP2O7 is known to exist, unlike the supposed compound with the formula stated. Changed. Double sharp (talk) 07:18, 29 July 2016 (UTC)[reply]

--R8R (talk) 21:04, 26 July 2016 (UTC)[reply]

In another extraction method" now wait a second. I didn't even realize the first para was an extraction method on my first read until I saw you suddenly jumped to another one. So, the flow here is weak. You would be better off starting with a para says that thorium is a rare metal (or something) and there is no (or few) minerals that have Th as its primary component (I understand there are such minerals, but they are exceptionally rare; am I correct?). You've mentioned that before and you may refer to this as to a fact you'd introduced a reader to. "Since there are no/whatever minerals that have Th as its principal component, Th is mined from minerals in which it is found as an impurity. Most production relies on monazite, which is worldwide abundant and often contains some Th [you already said that, so half a sentence is enough]. Other minerals are sometimes used, but this is rare. [is that correct? right now you're saying most production relies on monazite]"
And then go with a para that describes the first production method.

I found the original USGS report and will change some things. (Most production relies on monazite because it is mined for the rare earth content and Th is produced as a by-product. If demand for Th ever increased, we would probably be relying on thorite instead.) Double sharp (talk) 06:50, 2 August 2016 (UTC)[reply]

I'll wait for the change to come and skip the section for now.--R8R (talk) 11:15, 2 August 2016 (UTC)[reply]


Uses
[edit]
It wasn't as bad as I thought, just one misplaced para ruined the flow.--R8R (talk) 14:38, 6 August 2016 (UTC)[reply]

I've added many comments with questions throughout the section. I've been concerned with making this look readable and couldn't yet look for answers. Please do--R8R (talk) 16:16, 6 August 2016 (UTC)[reply]

Nuclear energy
[edit]

Is it a real application when it is only a possible use? For me all the nuclear applications belong at the end of the section. There are real but slowly phasing out applications. The nuclear applications are planned for the futur or they are research applications long closed down. The thorium fuel cycle is no more real than the breader reactors of the uranium fuel cycle. The radio isotop dating in the uranium article is part of the isotopes section and there it fits much better than in the application section. --Stone (talk) 19:03, 31 July 2016 (UTC)[reply]

It is not just a possible use; there really is one active reactor today in India using Th as well as U. Anyway, if Greenwood and Earnshaw (as well as the Wickleder review) put it under their own sections for applications (radiometric dating is also put there in Wickleder), it's good enough for me. (Seriously, Wickleder et al. call it "the largest potential for thorium", and this in a review of thorium chemistry instead of a glowing pro-thorium-power pamphlet.) I think it makes more sense to put in applications that may be on the rise first, before those that are on the wane. Today, thorium tends to be used only when its radioactivity is needed. Double sharp (talk) 08:24, 1 August 2016 (UTC)[reply]
I can not look into the future and I doubt that Greenwood and Wickleder can do. Thorium-based_nuclear_power#Current_projects#India clearly states that it is not running. This is a Prototype which makes it a lab test equipmemnt but not a seriuos use. I can not see any serious efford to make this a large scale use. __Stone (talk) 20:57, 1 August 2016 (UTC)[reply]
Under "Nuclear reactors and atomic energy" (under applications) Greenwood starts by covering 235U and its long history, and then mentions 233U and 239Pu under the same section, writing about the advantages of 233U and then mentioning the reprocessing problems because of the energetic gamma decay of the daughters. (Yes, he also writes a whole paragraph about the prototype breeder reactors for 239Pu, also as an application.) Further, Wickleder is very positive about the whole thing, listing it after the non-nuclear applications: "Maybe the largest potential for thorium is its use in nuclear energy." And after listing advantages and disadvantages he writes "The nuclear technology has nevertheless matured with the development of high-temperature gas-cooled reactors". Also, the Indian official programme looks like a very serious, governmental effort to make Th reactors happen (along with the reactor at Kalpakkam, which uses some 233U as well as 235U and 239Pu). Double sharp (talk) 06:57, 2 August 2016 (UTC)[reply]
The Chinese will start the reactor in the 2030s and the Indians have not yet selected a building site according to the USGS comodity report. To make the future for thorium what it is proposed by the crystall ball fraction a lot of things have to happen in the future. Best would be a section on nuclear fuel, but with much less enthusiasm and kill it completely from the use section, because it is not a use it is a future use. --Stone (talk) 20:51, 3 August 2016 (UTC)[reply]
The new organization in the text is really looking great!--Stone (talk) 20:47, 17 August 2016 (UTC)[reply]

The section is more or less good on the technical part.--R8R (talk) 19:39, 8 August 2016 (UTC)[reply]

Precautions
[edit]
Notes
[edit]

I succeeded in cutting the notes down from the ridiculous 26 there used to be to 10. ^_^ Double sharp (talk) 13:29, 23 July 2016 (UTC)[reply]

Ten is a very decent number. Looks like many (and the article looks well-researched) but not too many (and the impression isn't ruined). I think I'd put ten or twelve as the upper limit.--R8R (talk) 16:25, 23 July 2016 (UTC)[reply]
Lead section
[edit]

My general advice is: use four paras, first introductory and mentioning physics and/or chem, second on history, third on application and fourth on biology/ecology. See fluorine for an example. Maybe another para on isotopes would be appropriate here (though I'd try to avoid that, there is really one isotope that matters). History is currently ridiculously small here, not to mention any properties.--R8R (talk) 20:17, 8 August 2016 (UTC)[reply]

Pictures
[edit]

--R8R (talk) 20:57, 8 August 2016 (UTC)[reply]

I re-read fluorine; indeed, it is a masterpiece and it wouldn't have been one without TCO. What I want to say now is, can we get as many pictures? They also make the text they surround more interesting, so this is important (which is why I even gave it its own subheader in this review).--R8R (talk) 17:11, 9 August 2016 (UTC)[reply]
To do
[edit]

This list is supported to contain the issues temporarily skipped. Still, I don't want to overlook these.--R8R (talk) 20:17, 21 July 2016 (UTC)[reply]

Why is thorium so stable? I admit, I did try to answer this question. After Pb completes a proton shell at Z=82, the next subshell to be filled is according to this site 1h9/2, which gets us to Z=92. Which explains uranium nicely, but not thorium. Perversely, if you look at the neutron subshells after N=126, 2g9/2 gets us to N=136 and then 3d5/2 to N=142, which explains thorium nicely, but not uranium. Then again, since actinide nuclei are not spherical, we should not expect these predictions to be sensible in the first place. This may not actually be explainable in an understandable manner for the actinides. (I dare to say this sort of thing for the spherical early lanthanide nuclei; see the discussion I wrote for cerium, for which this is actually a reason why it is so common. But for nuclei with 150 < A < 190 and A > 220, the shell model simply does not apply, even in the vicinity of the line of beta stability, because these nuclei are not spherical.) Double sharp (talk) 10:30, 26 July 2016 (UTC)[reply]

N

[edit]

Continued at Talk:Thorium/PR continued with R8R. Double sharp (talk) 01:30, 12 May 2017 (UTC)[reply]