Affine arithmetic (AA) is a computer arithmetic which wis made tae improve the performance o interval arithmetic.

Background

[eedit | eedit soorce]

Today, the interval arithmetic technology which wis made bi Sunaga[1] & R. Moore[2][3][4] is usit i many areas includin validatit numerics[5]. But unfortunately, interval arithmetic is useless whan numerical computation is repeatit many times[4]. Therefore, many experts have studiit hou tae overcome this weakness. Affine arithmetic is ane result o this movement.

Applications

[eedit | eedit soorce]

Affine arithmetic is available i some interval arithmetic libraries like INTLAB[6][7]. It is also usit i the followin fields:

Improvements

[eedit | eedit soorce]

Some experts are tryin tae improve affine arithmetic. Their results are known as the extendit affine arithmetic[28][29][30] or modifiit affine arithmetic[31][32].

Libraries

[eedit | eedit soorce]

This a list o libraries thon supports affine arithmetic:

References

[eedit | eedit soorce]
  1. T. Sunaga, Theory of interval algebra and its application to numerical analysis. (1958). RAAG memoirs, 29–46.
  2. Interval Analysis. Englewood Cliff, New Jersey, USA: Prentice-Hall. (1966). ISBN 0-13-476853-1.
  3. Moore, R. E. (1979). Methods and applications of interval analysis. Society for Industrial and Applied Mathematics.
  4. a b Introduction to Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). (2009). ISBN 0-89871-669-1.
  5. Jaulin, L. Kieffer, M., Didrit, O. Walter, E. (2001). Applied Interval Analysis. Berlin: Springer.
  6. S.M. Rump: INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 77-104. Kluwer Academic Publishers, Dordrecht, 1999.
  7. S.M. Rump, M. Kashiwagi: Implementation and improvements of affine arithmetic, Nonlinear Theory and Its Applications (NOLTA), IEICE, 2015.
  8. Femia, N., & Spagnuolo, G. (2000). True worst-case circuit tolerance analysis using genetic algorithms and affine arithmetic. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(9), 1285-1296.
  9. Lemke, A., Hedrich, L., Barke, E., & Barke, E. (2002, November). Analog circuit sizing based on formal methods using affine arithmetic. In Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design (pp. 486-489). ACM.
  10. Ding, T., Trinchero, R., Manfredi, P., Stievano, I. S., & Canavero, F. G. (2015). How affine arithmetic helps beat uncertainties in electrical systems. IEEE Circuits and Systems Magazine, 15(4), 70-79.
  11. Grimm, C., Heupke, W., & Waldschmidt, K. (2004, February). Refinement of mixed-signals systems with affine arithmetic. In Proceedings Design, Automation and Test in Europe Conference and Exhibition (Vol. 1, pp. 372-377). IEEE.
  12. Grimm, C., Heupke, W., & Waldschmidt, K. (2004). Analysis of mixed-signal systems with affine arithmetic. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(1), 118-123.
  13. Radojicic, C., Grimm, C., Schupfer, F., & Rathmair, M. (2013). Verification of mixed-signal systems with affine arithmetic assertions. VLSI Design, 2013, 5.
  14. Radojicic, C., & Grimm, C. (2016, June). Formal verification of mixed-signal designs using extended affine arithmetic. In 2016 12th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME) (pp. 1-4). IEEE.
  15. Y. Kanazawa and S. Oishi (2002), "A numerical method of proving the existence of solutions for nonlinear ODEs using affine arithmetic". Proc. SCAN'02 — 10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics.
  16. F. Messine and A. Mahfoudi (1998), "Use of affine arithmetic in interval optimization algorithms to solve multidimensional scaling problems". Proc. SCAN'98 — IMACS/GAMM International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (Budapest, Hungary), 22–25.
  17. F. Messine (2002), "Extensions of affine arithmetic: Application to unconstrained global optimization". Journal of Universal Computer Science, 8 11, 992–1015.
  18. Vaccaro, A., Canizares, C. A., & Villacci, D. (2009). An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty. IEEE Transactions on Power Systems, 25(2), 624-632.
  19. Gu, W., Luo, L., Ding, T., Meng, X., & Sheng, W. (2014). An affine arithmetic-based algorithm for radial distribution system power flow with uncertainties. International Journal of Electrical Power & Energy Systems, 58, 242-245.
  20. Wang, S., Han, L., & Wu, L. (2014). Uncertainty tracing of distributed generations via complex affine arithmetic based unbalanced three-phase power flow. IEEE Transactions on Power Systems, 30(6), 3053-3062.
  21. Pirnia, M., Cañizares, C. A., Bhattacharya, K., & Vaccaro, A. (2014). A novel affine arithmetic method to solve optimal power flow problems with uncertainties. IEEE Transactions on Power Systems, 29(6), 2775-2783.
  22. Vaccaro, A., & Canizares, C. A. (2016). An affine arithmetic-based framework for uncertain power flow and optimal power flow studies. IEEE Transactions on Power Systems, 32(1), 274-288.
  23. Ding, T., Bo, R., Guo, Q., Sun, H., Wu, W., & Zhang, B. (2013). A non-iterative affine arithmetic methodology for interval power flow analysis of transmission network.
  24. Ding, T., Cui, H., Gu, W., & Wan, Q. (2012). An uncertainty power flow algorithm based on interval and affine arithmetic. Automation of Electric Power Systems, 13.
  25. Pirnia, M., Cañizares, C. A., Bhattacharya, K., & Vaccaro, A. (2012, July). An affine arithmetic method to solve the stochastic power flow problem based on a mixed complementarity formulation. In 2012 IEEE Power and Energy Society General Meeting (pp. 1-7). IEEE.
  26. T. Kikuchi and M. Kashiwagi (2001), "Elimination of non-existence regions of the solution of nonlinear equations using affine arithmetic". Proc. NOLTA'01 — 2001 International Symposium on Nonlinear Theory and its Applications.
  27. M. Kashiwagi (1998), "An all solution algorithm using affine arithmetic". NOLTA'98 — 1998 International Symposium on Nonlinear Theory and its Applications (Crans-Montana, Switzerland), 14–17.
  28. Liao, X., Liu, K., Le, J., Zhu, S., Huai, Q., Li, B., & Zhang, Y. (2020). Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties. International Journal of Electrical Power & Energy Systems, 115, 105440.
  29. Messine, F., & Touhami, A. (2006). A general reliable quadratic form: An extension of affine arithmetic. Reliable Computing, 12(3), 171-192.
  30. Goubault, E., & Putot, S. (2008). Perturbed affine arithmetic for invariant computation in numerical program analysis. arXiv preprint arXiv:0807.2961.
  31. Shou, H., Lin, H., Martin, R., & Wang, G. (2003). Modified affine arithmetic is more accurate than centered interval arithmetic or affine arithmetic. In Mathematics of Surfaces (pp. 355-365). Springer, Berlin, Heidelberg.
  32. Shou, H., Lin, H., Martin, R. R., & Wang, G. (2006). Modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting. Journal of Computational and Applied Mathematics, 195(1-2), 155-171.
  33. Overview of kv – a C++ library for verified numerical computation, Masahide Kashiwagi, SCAN 2018.

Further readin

[eedit | eedit soorce]

Applications

[eedit | eedit soorce]

Surveys

[eedit | eedit soorce]