Ten artykuł wymaga uzupełnienia informacji.Artykuł należy uzupełnić o istotne informacje: coś o homomorfizmach; rozbudować wstęp, w miarę możliwości wypracować definicje intuicyjną.Dokładniejsze informacje o tym, co należy poprawić, być może znajdują się w dyskusji tego artykułu. Po wyeliminowaniu niedoskonałości należy usunąć szablon ((Dopracować)) z tego artykułu.
Ten artykuł dotyczy matematyki. Zobacz też: inne znaczenia słowa „krata”.
Dzielniki 60 tworzą kratę.
Diagram Hassego kraty Tamriego. Warto zauważyć, iż punkty kraty tworzą wielościan, zwany angielskim terminem associahedron, co można przetłumaczyć jako „wielościan asocjacji”.

Kraty (ang. lattice) – struktury matematyczne, które można opisywać albo algebraicznie, albo w sensie częściowych porządków[1].

Struktura algebraiczna

Krata w sensie algebraicznym to struktura algebraiczna gdzie jest (niepustym) zbiorem, a i są odwzorowaniami z w spełniającymi dla dowolnych następujące warunki:

1.
2.
3.
4.

Przykładem kraty jest dowolna algebra Boole’a.

W każdej kracie spełniona jest równoważność: Relacja zdefiniowana za pomocą równoważności

jest częściowym porządkiem, w którym każda para ma kres górny i kres dolny:

Krata permutacji zbioru czteroelementowego.

Niekonieczność aksjomatu 1

Aksjomat 1 podaje się tradycyjnie w definicji kraty, ale wynika on z aksjomatu 4:

Niech Wtedy na mocy lewej części aksjomatu 4 otrzymujemy

a na mocy prawej:

co po podstawieniu do poprzedniego wzoru daje:

Podobnie dowodzi się, że

Struktura porządkowa

Krata w sensie częściowych porządków to (niepusty) częściowy porządek w którym każda para ma kres dolny i kres górny

Jeśli zdefiniujemy

to dostaniemy kratę w sensie algebraicznym, w której oczywiście

Półkraty

Półkraty w sensie algebraicznym to dokładnie pasy przemienne, czyli półgrupy przemienne, w których równość zachodzi dla dowolnego [2]. Para gdzie relacja jest zdefiniowana przez

nazywana jest półkratą górną (lub ∨-półkratą). Innymi słowy, jest to częściowy porządek, w którym każda para ma kres górny:

Jeśli zdefiniujemy to otrzymamy półkratę dolną (lub ∧-półkratę), tzn. częściowy porządek, w którym każda para (x, y) ma kres dolny.

Podkraty

Podkratą kraty nazywamy podzbiór będący podalgebrą, tzn. dla każdego musimy mieć

Zupełność

Za pomocą indukcji matematycznej można udowodnić, że w kracie każdy skończony i niepusty podzbiór ma kres górny i kres dolny. Własność ta prowadzi do pojęcia kraty zupełnej – nazywamy tak częściowy porządek w którym każdy podzbiór zbioru ma kres górny i kres dolny[potrzebny przypis]; w szczególności, każda krata zupełna ma najmniejszy i największy element.

Rozdzielność

Krata jest rozdzielna (dystrybutywna), gdy dla każdego

Można udowodnić, że w każdej kracie spełnione są nierówności

oraz

jeśli pierwsze prawo rozdzielności

jest spełnione dla dowolnych to musi też zachodzić również drugie prawo rozdzielności.

Reprezentacja krat rozdzielnych

Dla każdego zbioru zbiór potęgowy (uporządkowany przez inkluzję ) jest kratą rozdzielną. Podkrata kraty rozdzielnej jest zawsze sama rozdzielna, więc każda podkrata zbioru potęgowego jest też kratą rozdzielną.

Twierdzenie Birkhoffa-Stone'a o reprezentacji krat rozdzielnych mówi, że każda krata rozdzielna ma tę postać:

Każda krata rozdzielna jest izomorficzna z pewną podkratą kraty (dla pewnego zbioru ).

Przykłady

dla każdego
dla każdego
dla każdych w zbiorze
dla każdych w zbiorze

Pięciokąt i diament są kratami nierozdzielnymi, więc każda krata zawierająca pięciokąt albo diament jako podkratę musi być też nierozdzielna. Odwrotnie: w każdą kratę nierozdzielną można zanurzyć albo diament albo pięciokąt (lub obydwa) jako podkratę.

Reprezentacja

Dla każdego zbioru definiujemy jest relacją równoważności Wówczas uporządkowany przez relację jest kratą zupełną.

Można udowodnić, że każda krata jest izomorficzna z podkratą kraty (dla pewnego zbioru ).

Zobacz też

Przypisy

  1. krata, [w:] Encyklopedia PWN [dostęp 2021-10-02].
  2. półkrata, [w:] Encyklopedia PWN [dostęp 2022-10-12].

Linki zewnętrzne