Cet article est une ébauche concernant la zoologie.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Position de l'organe de Haller chez une tique (ici : Ixodes ricinus)
Détail (microscopie électronique) de la cuvette de l'organe de Haller, ici chez une nymphe de la tique Ixodes ricinus

L'organe de Haller est une paire d'organe sensoriel possédé par les tiques « dures »[1] (Ixodes ricinus par exemple), décrit pour la première fois[2] par Haller en 1881 (sur un Ixode).

Localisation

[modifier | modifier le code]

L'organe de Haller est situé dans une protubérance près de l'extrémité du dernier article (le tarse) de la première paire de pattes[3]. Cette protubérance est située sur la zone externe (dorsale) du tarse[4].

Description

[modifier | modifier le code]

Cet organe est un « complexe sensoriel » [5]constitué de :

La forme de l'organe de Haller varie beaucoup selon l'espèce, et aussi parfois entre mâle et femelle de la même espèce. Par exemple l'ouverture en est généralement réduite, mais chez les tiques femelles d'un genre spécialisé dans le parasitage de microchiroptères elle est au contraire très large[9].

Fonctions

[modifier | modifier le code]

L'organe de Haller permet aux tiques de détecter la vapeur d'eau[10] (dont elles ont besoin et que certaines espèces peuvent absorber, selon les travaux de Gaede & Knülle publiés en 1997[11]) et le contact avec l'eau liquide (que les tiques préfèrent éviter, même si elles recherchent généralement une hygrométrie importante[12],[13]) ou la présence d'un animal et notamment des mammifères, par chimiotactisme ou hydrotactisme sur des distances atteignant 10-15m (plus ou moins selon les conditions de circulation de l'air et thermohygrométrique) selon les résultats des travaux de Leonovich publiés en 2004[14].

Cet organe remplirait donc des fonctions comparables à celle des organes olfactifs et gustatifs des mammifères. Et en écartant ses pattes antérieures (à la manière d'un insectes disposant d'antennes), la tique peut probablement détecter des différences entre les flux de molécules analysés par chaque patte, et en déduire la direction d'une source de molécules d'intérêt pour elle.

L'organe de Haller complète les fonctions d'autres organes sensoriels (cellules photosensibles rudimentaires (chez certaines espèces uniquement, les autres étant réputées aveugles au spectre lumineux), pédipalpes, soies distribuées sur les pattes et les téguments du reste du corps).

Outre la vapeur d'eau, et les marques de leurs propres excréments (une expérience simple montre que la tique I. ricinus fait demi-tour quand elle arrive sur une bande de papier « contaminée » par ses propres excréments, mais aussi quand elle s'approche de ces excréments sans même un contact)[15], les tiques seraient ainsi en mesure de détecter le dioxyde de carbone, l'ammoniac, le sulfure d'hydrogène et une variété de composés organiques tels que les benzaldéhydes émis par la respiration, l'haleine ou la sueur d'hôtes potentiels. Différents organes récepteurs ciblent des molécules différentes, avec des sensibilités différentes. Des récepteurs reconnaissent les phénols de composés phénoliques tels que le o-chlorophénol, l'o-bromophénol, l'o-méthylphénol et leurs dérivés ; des récepteurs de lactones reconnaissent la γ-valérolactone[14].

Des sensilles à sensibilité butyrique existeraient mais semblent moins importantes qu'on ne l'a d'abord pensé (avant les années 1950).

On a montré chez Amblyomma variegatum, une tique qui infeste volontiers le bétail, cet organe est aussi le récepteur d'une phéromone d'agrégation (quand les mâles ont trouvé hôte, ils y attirent les femelles ainsi que le ferait un «éclaireur». L'un des composants de cette phéromone est le 2-nitrophénol[14],[16]. L'organe de Haller joue aussi un rôle dans les réponses intraspécifiques d’agrégation et d'accouplement chez d'autres espèces[15].

Enjeux pour la lutte antivectorielle

[modifier | modifier le code]

Alors qu'un grand nombre d'espèces d'insectes sont en régression, le nombre des tiques augmente de manière d'autant plus préoccupante qu'elle est classée comme le second vecteur de maladies infectieuses (derrière le moustique). On cherche donc à développer des répulsifs moins toxiques ou moins écotoxiques que ceux qui sont sur le marché.

Chez la tique, le meilleur répulsif serait celui qui perturberait (uniquement chez les espèces à risque, idéalement), le comportement de recherche des hôtes. Or c'est l’organe de Haller qui a priori permet à la tique (nymphe et adulte) de détecter les hôtes qui lui fourniront son repas de chair et de sang, grâce aux odeurs, au dioxyde de carbone et à la chaleur qu'ils émettent[17],[18],[19],[20],[21]. En 2018, les mécanismes de perturbation du comportement (de recherche de l'hôte) par les répulsifs ne sont pas encore clairement compris[22],[23].

Un autre objectif pourrait être de pouvoir sélectivement piéger les tiques, ou de pouvoir les piéger dans certains environnements (jardins...). C'est par l'organe de Halleur qu'elles détecteraient le cocktail chimique (encore à découvrir) qui les conduit habituellement leurs hôtes.

Notes et références

[modifier | modifier le code]
  1. « Organe de Haller - Dictionnaire des Sciences Animales », sur cirad.fr (consulté le ).
  2. Haller G (1881) Vorliiufige Bemerkungen iiber das Geh6rorgan der Ixodiden. Zool. Anz. 4, 165-167
  3. « Pfizer.ch », sur Pfizer.ch (consulté le ).
  4. Parola P & Raoult D (2001) Ticks and tickborne bacte rial diseases in humans: an emerging infectious threat. Clinical infectious diseases 32:897-928.
  5. Schramm F (2012). Inflammation cutanée et borréliose de Lyme: étude in vitro des interactions entre les cellules résidentes de la peau et Borrelia (Thèse de Doctorat, Université de Strasbourg)
  6. Lees A.D (1948) The sensory physiology of the sheep tick, Ixodes ricinus. J. Exp. Biol. 25 , 145–207
  7. Arthur Don R (1962) Ticks and disease. Pergamon press, intern. series of monogr. on pure and applied Biol. ZOO~. Div., 9.
  8. Waladde S.M (1982) '[Tip-recording from ixodid tick olfactory sensilla: responses to tick related odours. Journal of comparative physiology, 148(4), 411-418 |résumé.
  9. Morel, P. C., & Perez, C. (1973). Morphologie des stades préimaginaux des Ixodida s. str. d’Europe occidentale. II.-Les larves des Pholeoixobh Schulze, 1942.
  10. Hair J.A, Sauer J.R & Durham K.A (1975) Water balance and humidity preference in three species of ticks. J. Med. Ent. 12 , 37–47
  11. Gaede K and Knülle W (1997) On the mechanism of water vapour sorption from unsaturated atmospheres by ticks. J. Exp. Biol. 200 , 1491–1498
  12. Krober, T., & Guerin, P. M. (1999). Ixodid ticks avoid contact with liquid water. Journal of Experimental Biology, 202(14), 1877-1883 (PDF, 7 pages).
  13. Fielden L.J & Lighton J.R.B (1996) Effects of water stress and relative humidity on ventilation in the tick Dermacentor andersoni (Acari: Ixodidae). Physiol. Zool. 69 , 599–617
  14. a b et c Leonovich S.A. (2004) Phenol and lactone receptors in the distal sensilla of the Haller’s organ in Ixodes ricinus ticks and their possible role in host perception. In: Exp Appl Acarol ;32(1-2), S. 89-102, PMID 15139275
  15. a et b Grenacher S, Kröber T, Guerin P.M & Vlimant M (2001) Behavioural and chemoreceptor cell responses of the tick, Ixodes ricinus, to its own faeces and faecal constituents. Experimental & applied acarology, 25(8), 641-660 (résumé).
  16. Diehl P.A, Guerin P.M, Vlimant M &Steullet P (1991) Biosynthesis, production site and emission rates of aggregation-attachment pheromone in males of two Amblyomma ticks. J. Chem. Ecol. 17 , 833–847
  17. LEES, A. D. The Sensory Physiology of the Sheep Tick, Ixodes Ricinus L. Journal of Experimental Biology 25, 145-207 (1948).
  18. Apanaskevich, D. A. & Oliver, J. H. J. in Biology of TIcks Vol. 1 (eds D. E. Sonenshine & R. M. Roe) Ch. 3, 59-73 (Oxford University Press, 2014).
  19. Leonovich, S. A. Orientatinal Behavior of the Ixodid Tick Hyalomma Asiaticum Under Desert Conditions. Parazitologia 20, 431-440 (1986).
  20. Carr, A. L. & Roe, M. Acarine attractants: Chemoreception, bioassay, chemistry and control. Pestic Biochem Physiol 131, 60-79, doi:10.1016/j.pestbp.2015.12.009 (2016)
  21. a b c d e et f Carr A.L & Salgado V (2019) Ticks Home in on Body Heat: A New Understanding of Ectoparasite Host-Seeking and Repellent Action. bioRxiv, 564179.
  22. Wikel, S. K. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions. Vet Sci 5, 60, doi:10.3390/vetsci5020060 (2018)
  23. Sonenshine, D.E & Roe R.M (2014) Biology of Ticks. Vol. II (Oxford University Press).
  24. Robert Mitchel D & al (2017) Infrared light detection by the haller’s organ of adult american dog ticks, Dermacentor variabilis (Ixodida: Ixodidae) ; Volume 8, Issue 5, August 2017, Pages 764-771 ; Ticks and Tick-borne Diseases - Short communication | https://doi.org/10.1016/j.ttbdis.2017.06.001

Voir aussi

[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes

[modifier | modifier le code]

Lien externe

[modifier | modifier le code]
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue ! Comment faire ?

Bibliographie

[modifier | modifier le code]