Actine G.
Actine F.

L'actine est une protéine bi-globulaire de 5,46 nm de diamètre qui joue un rôle important dans l'architecture et les mouvements cellulaires [EN]. Elle est présente dans toutes les cellules du corps (c’est une protéine ubiquitaire), mais elle est particulièrement abondante dans les cellules musculaires. Elle peut représenter jusqu'à 15 % de la masse totale protéique des cellules. Cette protéine a été hautement conservée lors de l'évolution des eucaryotes, puisque l'identité entre un isotype d'actine humaine et l'actine de levure (S. cerevisiae) est supérieure à 90 %. La plupart des cellules eucaryotes possèdent de nombreux gènes d'actine codant des protéines légèrement différentes[1],[2].

Structure

L'actine est une protéine dont le diamètre est de 5,46 nm. Elle est constituée par un polypeptide de 375 acides aminés qui contient un acide aminé, l'histidine, ayant subi une modification post-traductionnelle rare : la 3-méthylhistidine. La détection de 3-méthylhistidine dans l'urine est le signe de nécrose cellulaire à la suite d'une blessure musculaire.

Chez les mammifères, il existe 6 isotypes d'actine :

Dans la cellule, on la retrouve sous deux formes :

La cytochalasine B (en) est une mycotoxine qui inhibe la formation des microfilaments d'actine.

Polymérisation

Article détaillé : Filament d'actine.
Formation du filament fin.

Elle commence par une phase dite de nucléation pendant laquelle des dimères, trimères, ou tétramères (selon le processus de nucléation utilisé) d'actine (appelés noyaux) s'assemblent. Cette étape, défavorable thermodynamiquement, est une étape lente. Dans le contexte cellulaire, l'existence de nucléateurs de l'actine accélère cette étape et la rend de ce fait compatible avec les échelles de temps et d'espaces des processus biologiques cellulaires. On distingue 3 groupes de nucléateurs : le complexe Arp2/3 (complexe composé de 7 sous unités protéiques), les formines, et les nucléateurs dit « atypiques » comme la protéine Spire. Si la concentration en monomères d'actine (actine dite G) est supérieure à une concentration critique, l'actine G s'assemble en filaments à partir des noyaux préformés. C'est l'étape d'élongation des filaments. Cette étape rapide est souvent appelée phase de polymérisation, bien que l'actine filamenteuse (dite actine-F) ne soit pas un véritable polymère (les monomères ne sont pas liés entre eux par une liaison covalente au sein d'un filament). Une fois formés, les filaments d'actine sont à l'équilibre entre dissociation des filaments aux extrémités (-) et association de monomères aux extrémités (+). Dans les cellules, la formation spontanée de noyaux d'actine est très défavorable.

Localisation et rôle

Superposition d'images fusionnées montrant les filaments d'actine d'une cellule. Le code couleur de l'image retranscrit l'axe Z afin de montrer sur une image en 2D les différentes hauteurs auxquelles on peut trouver des filaments.

Dans la contraction musculaire, l'actine polymérisée se lie à une autre protéine, la myosine. Cette dernière s'accroche au polymère d'actine et la fait coulisser par rapport à elle; à l'autre bout du filament de myosine, un autre filament d'actine procède de façon symétrique ; les deux filaments d'actine se rapprochent donc l'un de l'autre, c'est la contraction musculaire.

Autres rôles :

Des parasites intracellulaires tels que Listeria sont capables de détourner la machinerie cellulaire qui contrôle la polymérisation de l'actine pour former des microfilaments derrière eux, ce qui permet de les propulser.

Notes et références

  1. Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC, « The evolution of compositionally and functionally distinct actin filaments », Journal of Cell Science, vol. 128, no 11,‎ , p. 2009–19 (PMID 25788699, DOI 10.1242/jcs.165563).
  2. Ghoshdastider U, Jiang S, Popp D, Robinson RC, « In search of the primordial actin filament. », Proc Natl Acad Sci U S A., vol. 112, no 30,‎ , p. 9150-1 (PMID 26178194, DOI 10.1073/pnas.1511568112).
  3. Actin cable dynamics in budding yeast (Hyeong-Cheol Yang and Liza A. Pon) http://www.pnas.org/content/99/2/751.short.

Voir aussi

Bibliographie

Articles connexes