Un grupoide, en matemática, especialmente en teoría de las categorías y en homotopía, es un concepto que, simultáneamente, generaliza grupos, relaciones de equivalencia en conjuntos, y acciones de grupos en conjuntos.
Frecuentemente, son usados para captar información acerca de objetos geométricos tales como variedades.

El término "grupoide" también es usado para un magma: un conjunto con cualquier tipo de operación binaria en él. No usaremos ese término para tal concepto en este artículo.

Definiciones

[editar]

Desde un punto de vista de categorías, un grupoide es simplemente una de ellas en la que todo morfismo es un isomorfismo (o sea, aquel es inversible).[1]

Alternativamente es posible dar la siguiente definición equivalente: un grupoide consiste de

  • Dos conjuntos , el grupoide y , la base.
  • funciones sobreyectivas. es llamada proyección origen o fuente y es llamada la proyección final o destino.
  • Una aplicación , , la aplicación de inclusión o identidad.
  • Si , entonces hay una multiplicación parcial que satisface las siguientes condiciones
  • , , para todo .
  • Asociatividad.
  • , para todo .
  • , para todo .
  • Para todo , existe , tal que y .

Ejemplos

[editar]
Las clases de homotopía son las clases de equivalencia determinadas por la relación de ser homotópicas, es decir, dos curvas tal que y ; son homotópicas si existe una aplicación continua tal que
,
, .
En este caso la base es el espacio , las aplicaciones origen y final son el origen y el final de cada curva. La aplicación identidad es , es decir la clase de equivalencia de la curva constante en y la inversa es recorrer la curva en sentido contrario.
Es claro que el grupoide fundamental incluye a todos los grupos fundamentales y los integra en una sola estructura, que a la postre resulta ser más natural para el estudio de la homotopía.

Grupoides de Lie y algebroides de Lie

[editar]

Al estudiar objetos geométricos, los grupoides que se presentan llevan a menudo alguna estructura diferenciable, convirtiéndose en grupoides de Lie. Estos se pueden estudiar en términos de los algebroides de Lie, en analogía a la relación entre los grupos de Lie y las álgebras de Lie.

Véase también

[editar]

Referencias

[editar]
  1. Post-Modern Algebra-Chapter IV universal Algebra pag. 284

Enlaces externos

[editar]