This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2018) (Learn how and when to remove this template message) This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (December 2009) (Learn how and when to remove this template message) This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (July 2020) (Learn how and when to remove this template message) (Learn how and when to remove this template message)

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.[clarification needed]

Mathematical measures of the likelihood of an event being true include probability theory, capacity, fuzzy logic, possibility, and credibility, as well as uncertainty.

Four axioms

Axiom 1. (Normality Axiom) .

Axiom 2. (Self-Duality Axiom) .

Axiom 3. (Countable Subadditivity Axiom) For every countable sequence of events , we have

.

Axiom 4. (Product Measure Axiom) Let be uncertainty spaces for . Then the product uncertain measure is an uncertain measure on the product σ-algebra satisfying

.

Principle. (Maximum Uncertainty Principle) For any event, if there are multiple reasonable values that an uncertain measure may take, then the value as close to 0.5 as possible is assigned to the event.

Uncertain variables

An uncertain variable is a measurable function ξ from an uncertainty space to the set of real numbers, i.e., for any Borel set B of real numbers, the set is an event.

Uncertainty distribution

Uncertainty distribution is inducted to describe uncertain variables.

Definition: The uncertainty distribution of an uncertain variable ξ is defined by .

Theorem (Peng and Iwamura, Sufficient and Necessary Condition for Uncertainty Distribution): A function is an uncertain distribution if and only if it is an increasing function except and .

Independence

Definition: The uncertain variables are said to be independent if

for any Borel sets of real numbers.

Theorem 1: The uncertain variables are independent if

for any Borel sets of real numbers.

Theorem 2: Let be independent uncertain variables, and measurable functions. Then are independent uncertain variables.

Theorem 3: Let be uncertainty distributions of independent uncertain variables respectively, and the joint uncertainty distribution of uncertain vector . If are independent, then we have

for any real numbers .

Operational law

Theorem: Let be independent uncertain variables, and a measurable function. Then is an uncertain variable such that

where are Borel sets, and means for any.

Expected Value

Definition: Let be an uncertain variable. Then the expected value of is defined by

provided that at least one of the two integrals is finite.

Theorem 1: Let be an uncertain variable with uncertainty distribution . If the expected value exists, then

Theorem 2: Let be an uncertain variable with regular uncertainty distribution . If the expected value exists, then

Theorem 3: Let and be independent uncertain variables with finite expected values. Then for any real numbers and , we have

Variance

Definition: Let be an uncertain variable with finite expected value . Then the variance of is defined by

Theorem: If be an uncertain variable with finite expected value, and are real numbers, then

Critical value

Definition: Let be an uncertain variable, and . Then

is called the α-optimistic value to , and

is called the α-pessimistic value to .

Theorem 1: Let be an uncertain variable with regular uncertainty distribution . Then its α-optimistic value and α-pessimistic value are

,
.

Theorem 2: Let be an uncertain variable, and . Then we have

Theorem 3: Suppose that and are independent uncertain variables, and . Then we have

,

,

,

,

,

.

Entropy

Definition: Let be an uncertain variable with uncertainty distribution . Then its entropy is defined by

where .

Theorem 1(Dai and Chen): Let be an uncertain variable with regular uncertainty distribution . Then

Theorem 2: Let and be independent uncertain variables. Then for any real numbers and , we have

Theorem 3: Let be an uncertain variable whose uncertainty distribution is arbitrary but the expected value and variance . Then

Inequalities

Theorem 1(Liu, Markov Inequality): Let be an uncertain variable. Then for any given numbers and , we have

Theorem 2 (Liu, Chebyshev Inequality) Let be an uncertain variable whose variance exists. Then for any given number , we have

Theorem 3 (Liu, Holder's Inequality) Let and be positive numbers with , and let and be independent uncertain variables with and . Then we have

Theorem 4:(Liu [127], Minkowski Inequality) Let be a real number with , and let and be independent uncertain variables with and . Then we have

Convergence concept

Definition 1: Suppose that are uncertain variables defined on the uncertainty space . The sequence is said to be convergent a.s. to if there exists an event with such that

for every . In that case we write ,a.s.

Definition 2: Suppose that are uncertain variables. We say that the sequence converges in measure to if

for every .

Definition 3: Suppose that are uncertain variables with finite expected values. We say that the sequence converges in mean to if

.

Definition 4: Suppose that are uncertainty distributions of uncertain variables , respectively. We say that the sequence converges in distribution to if at any continuity point of .

Theorem 1: Convergence in Mean Convergence in Measure Convergence in Distribution. However, Convergence in Mean Convergence Almost Surely Convergence in Distribution.

Conditional uncertainty

Definition 1: Let be an uncertainty space, and . Then the conditional uncertain measure of A given B is defined by

Theorem 1: Let be an uncertainty space, and B an event with . Then M{·|B} defined by Definition 1 is an uncertain measure, and is an uncertainty space.

Definition 2: Let be an uncertain variable on . A conditional uncertain variable of given B is a measurable function from the conditional uncertainty space to the set of real numbers such that

.

Definition 3: The conditional uncertainty distribution of an uncertain variable given B is defined by

provided that .

Theorem 2: Let be an uncertain variable with regular uncertainty distribution , and a real number with . Then the conditional uncertainty distribution of given is

Theorem 3: Let be an uncertain variable with regular uncertainty distribution , and a real number with . Then the conditional uncertainty distribution of given is

Definition 4: Let be an uncertain variable. Then the conditional expected value of given B is defined by

provided that at least one of the two integrals is finite.

References

Sources