Non-exhaust emissions come from wearing down motor vehicle brake pads, tires, roads themselves, and unsettling of particles on the road.[1][2][3][4][5] This particulate matter is made up of micrometre-sized particles and causes negative health effects, including respiratory disease and cancer.[6] Very fine particulate matter has been linked to cardiovascular disease.[7] Multiple epidemiological studies have demonstrates that particulate matter exposure is associated with acute respiratory infections, lung cancer, and chronic respiratory and cardiovascular disease. [8] Researchers have also found correlations between exposure to fine particulate matter and fatality rates in previous coronavirus epidemics. [9]

Studies have shown that non-exhaust emissions of particles from vehicles can be greater than particles due to exhaust.[4][10]

Types of emissions

Ways of reducing emissions

More comprehensive regulation of tires has been proposed by multiple scientists and regulators in the field.[13][14] Lighter vehicles pollute less [13] and reducing vehicle kilometers traveled is another method of mitigating non-exhaust emissions. Reducing demand for private vehicle travel can be accomplished by a variety of measures that increase the relative attractiveness of public transport and non-motorized modes relative to private vehicles. These measures can consist of disincentives for private vehicle ownership and use, i.e. measures that raise their costs and/or inconvenience, as well as incentives for alternative modes (e.g. public transit, walking, and biking).[15]

Electric and hybrid vehicles

Electric vehicles and hybrid vehicles with regenerative braking do not emit the same level of brake wear,[16] but as of 2022 were heavier than ICE vehicles so still give off more coarse (PM10) particles from re-suspended road particles, road wear, and tire wear.[17]

Regulatory agencies and policies that target exhaust emissions

Very few agencies are charged with implementing exhaust emission standards for non-exhaust emissions.[1] Most policies target exhaust emissions and do not regulate non-exhaust particulate matter emissions.[2] As of 2023 Euro 7 standards are still being argued about.[18]

See also

References

  1. ^ a b c "Non-exhaust Particulate Emissions from Road Transport (highlights)" (PDF). Organisation for Economic Co-operation and Development Publishing, Paris.
  2. ^ a b c Non-exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge (Report). Organisation for Economic Co-operation and Development. 2020. doi:10.1787/4a4dc6ca-en. ISBN 9789264452442.
  3. ^ Piscitello, Amelia; Bianco, Carlo; Casasso, Alessandro; Sethi, Rajandrea (2021). "Non-exhaust traffic emissions: Sources, characterization, and mitigation measures". Science of the Total Environment. 766: 144440. Bibcode:2021ScTEn.766n4440P. doi:10.1016/j.scitotenv.2020.144440. PMID 33421784. S2CID 231437358.
  4. ^ a b "Non-exhaust emission sources". Royal Society of Chemistry Environmental Chemistry Group.
  5. ^ a b c d Beddows, David C.S.; Harrison, Roy M. (2021). "PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles" (PDF). Atmospheric Environment. 244: 117886. Bibcode:2021AtmEn.24417886B. doi:10.1016/j.atmosenv.2020.117886. S2CID 224851906.
  6. ^ US EPA, OAR (26 April 2016). "Health and Environmental Effects of Particulate Matter (PM)". US EPA. Retrieved 5 October 2019.
  7. ^ "Pollution Particles Lead to Higher Heart Attack Risk". Bloomberg L.P. 17 January 2008. Archived from the original on 29 June 2011.
  8. ^ "Home". www.oecd-ilibrary.org. Retrieved 2023-05-01.
  9. ^ "Home". www.oecd-ilibrary.org. Retrieved 2023-05-01.
  10. ^ Wang, Xiaoliang; Gronstal, Steven; Lopez, Brenda; Jung, Heejung (2023). "Evidence of non-tailpipe emission contributions to PM2.5 and PM10 near southern California highways". Environmental Pollution. 317. doi:10.1016/j.envpol.2022.120691.
  11. ^ a b c "Non-Exhaust Emissions from Road Traffic" (PDF). 2019. Retrieved 2023-05-04.
  12. ^ "Home". www.oecd-ilibrary.org. Retrieved 2023-05-01.
  13. ^ a b "Car tyres produce vastly more particle pollution than exhausts, tests show". the Guardian. 2022-06-03. Retrieved 2022-06-04.
  14. ^ "Why tires — not tailpipes — are spewing more pollution from your cars". The Washington Post. Retrieved 2024-01-22.
  15. ^ "Home". www.oecd-ilibrary.org. Retrieved 2023-05-07.
  16. ^ Hall, Thomas J. (2017). "A Comparison of Braking Behavior between an IC Engine and Pure Electric Vehicle in Los Angeles City Driving Conditions". Brake Colloquium & Exhibition. SAE Technical Paper Series. 1. doi:10.4271/2017-01-2518.
  17. ^ Woo, Sang-Hee; Jang, Hyungjoon; Lee, Seung-Bok; Lee, Seokhwan (2022). "Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis". Science of the Total Environment. 842: 156961. doi:10.1016/j.scitotenv.2022.156961.
  18. ^ "ETRMA: New tire emissions rules must be 'synchronised' with UN requirements | European Rubber Journal". www.european-rubber-journal.com. Retrieved 2023-03-07.