Multipurpose prevention technologies (MPTs) are a class of products designed to address at least two health issues simultaneously, often focusing on sexual and reproductive health which includes contraception, human immunodeficiency virus (HIV) prevention, other sexually transmitted infection (STI) preventions, such as genital infection by human simplex virus (HSV) infection and human papillomavirus (HPV) infection.[1] For example, MPTs can combine contraception and HIV prevention, contraception and other STI prevention, or the prevention of multiple STIs. Since the simultaneous use of multiple products with a single indication against each specific sexual and reproductive health issue is inconvenient, this method may affect adherence. As a result, the goal of developing a MPT as an all-in-one product is to combat this issue.

As a note, these products can be still be utilized by individuals who wish to conceive, as well as breastfeeding and pregnant individuals, since some MPTs include HIV and STI prevention but do not include contraceptives.[2]

*In this article, the terms "male" and "female" are used to refer to biological sex.

Types

A range of MPT products have been in development.[2]The development pipeline includes different designs, product types, and configurations. While condoms are the only one available MPT product on the market, other MPTs in different dosage forms are still in various phases of clinical and preclinical development.[3]

MPT products that are available:

MPT products in clinical development:

There is no published data to support the development of oral MPT products. One of the major concerns is that there are many considerations when incorporating multiple different active pharmaceutical ingredients into a single small oral pill (tablets or capsules) for multiple indications. In addition, there are very limited material options for oral pills that can maintain a longer residence time due to the acidic pH in human's GI tract.[5]

Prevalence

HIV, other STIs, and unintended pregnancy continue to be a public health concern worldwide, all sharing a common link of exposure.[12] The importance of MPTs has been recognized for some time now, and condoms serve as an excellent example. However, the potential impact of preventing HIV infection through condoms has been diminished due to lack of usage among females and males.[13] As of 2022, approximately 39 million people worldwide are currently living with HIV;[14] around 374 million new cases of STIs arise each year,[15] and nearly half (45%) of all pregnancies are unintended.[16]

History

STIs in humans have been documented since ancient times, with genetic evidence indicating HSV-2 infection over 1.5 million years ago. Similarly, the history of contraception also traces back to antiquity. The oldest male barrier contraceptives are condoms or penile sheaths, with the earliest forms of condoms being made from animal parts or chemically-treated linen.[4] Italian anatomist Gabriello Fallopiio claimed to have invented the linen sheath condom in 1564, with the intent to protect against syphilis. There were many other forms of condoms utilized by different ethnic groups, such as oiled silk paper by the Chinese and tortoise-shell, horn, or fine leather sheaths by the Japanese. It wasn't until the rubber vulcanization process invented by Charles Goodyear that the first rubber condom was made in 1855.[17] In 1993, the female condom was introduced with a similar objective, to provide protection against STIs and unintended pregnancies. There have been many discussions around MPTs for decades now, but barrier methods remain the only MPT product widely available.[13][4]

The MPT field emerged from the microbicide field, a natural extension from the microbicide field’s focus on women-controlled methods to prevent HIV acquisition.[18] In 1998, the Alliance for Microbicide Development was formed; however, it was disbanded and funding for microbicide research was reduced after clinical trials for multiple microbicides did not show prevention of HIV transmission.[13][4] In 2009, CAMI Health convened a multidisciplinary international meeting in Berkeley, California to formalize the MPT field which brought attention back to microbicides.[13][19] The aim of developing the MPT field was to prevent against any combination of HIV, other STIs, and unintended pregnancy. In 2011, the first major funding opportunity for MPT development was released by the National Institutes of Health.[20]

Advantages

MPTs provide prevention for multiple indications. Because of this, MPTs have the opportunity to revolutionize sexual health.[2]

MPTs can help increase adherence to HIV pre-exposure prophylaxis (PrEP) by decreasing the number of clinic visits to address family planning and sexual health topics. Furthermore, because MPTs address multiple preventative care needs in one product, MPTs have the opportunity to increase adherence by decreasing the number of total administrations an individual may be responsible for.[21] Additionally, MPTs can reduce the stigma surrounding HIV and STI prevention by combining prevention for these indications into contraceptives, a less stigmatized product.[22]

The successful development of MPTs could also pave the way for similar technologies to improve reproductive health more comprehensively. These advancements could encompass issues such as vaginal inflammation from infections, miscarriage and premature birth, cancer, menstrual cramps, or wound healing from trauma or childbirth.[4]

Opportunities for Improvement

Currently, male and female condoms are the only approved MPTs. While condoms are advantageous because of their protection against multiple indications, challenges may still arise between partners when negotiating condom use in intimate settings. For this reason, it is important to continue to develop alternate MPT candidates to provide individuals more options for prevention.[2]

A survey was done in parts of sub-Saharan Africa which indicated that 96% of surveyed women prefer MPTs over single indication products. Despite this preference, there is limited funding for MPTs, which can make it difficult for individuals to gain access and afford these products. Going forward, there are opportunities to improve accessibility to help ensure individuals who can benefit from these products are able to obtain them in an accessible and affordable manner.[23]

References

  1. ^ Lusti-Narasimhan, M; Merialdi, M; Holt, B (2014). "Multipurpose prevention technologies: maximising positive synergies". BJOG: An International Journal of Obstetrics & Gynaecology. 121 (3): 251. doi:10.1111/1471-0528.12606. PMID 24393212. S2CID 39117152.
  2. ^ a b c d e f Young Holt, Bethany; Turpin, Jim A.; Romano, Joseph (2021). "Multipurpose Prevention Technologies: Opportunities and Challenges to Ensure Advancement of the Most Promising MPTs". Frontiers in Reproductive Health. 3: 704841. doi:10.3389/frph.2021.704841. ISSN 2673-3153. PMC 9580637. PMID 36304018.
  3. ^ Brady, M; Tolley, E (2014). "Aligning product development and user perspectives: social-behavioural dimensions of multipurpose prevention technologies". BJOG: An International Journal of Obstetrics & Gynaecology. 121: 70–78. doi:10.1111/1471-0528.12844. PMID 25335843. S2CID 22781814.
  4. ^ a b c d e Dohadwala, Sarah; Politch, Joseph A.; Barmine, Jessica H.; Anderson, Deborah J. (2023). "A Brief History and Advancement of Contraceptive Multipurpose Prevention Technology (cMPT) Products". Open Access Journal of Contraception. 14: 83–94. doi:10.2147/OAJC.S375634. PMC 10276588. PMID 37332341.
  5. ^ a b c d e f g h i Young, Isabella C.; Benhabbour, Soumya Rahima (2021). "Multipurpose Prevention Technologies: Oral, Parenteral, and Vaginal Dosage Forms for Prevention of HIV/STIs and Unplanned Pregnancy". Polymers. 13 (15): 2450. doi:10.3390/polym13152450. ISSN 2073-4360. PMC 8347890. PMID 34372059.
  6. ^ Thurman, Andrea; Clark, Meredith; Hurlburt, Jennifer; Doncel, Gustavo (2013). "Intravaginal rings as delivery systems for microbicides and multipurpose prevention technologies". International Journal of Women's Health. 5: 695–708. doi:10.2147/IJWH.S34030. ISSN 1179-1411. PMC 3808127. PMID 24174884.
  7. ^ Weitzel, Mary; North, Barbara Best; Waller, Donald (2020). "Development of multipurpose technologies products for pregnancy and STI prevention: update on polyphenylene carboxymethylene MPT gel development†". Biology of Reproduction. 103 (2): 299–309. doi:10.1093/biolre/ioaa087. ISSN 0006-3363. PMC 7401404. PMID 32469052.
  8. ^ Obiero, Jael; Ogongo, Paul; Mwethera, Peter G; Wiysonge, Charles S (2021). Cochrane STI Group (ed.). "Topical microbicides for preventing sexually transmitted infections". Cochrane Database of Systematic Reviews. 2021 (3): CD007961. doi:10.1002/14651858.CD007961.pub3. PMC 8092571. PMID 33719075.
  9. ^ Harris, Danielle M.; Dam, Anita; Morrison, Kate; Mann, Chastain; Jackson, Ashley; Bledsoe, Shannon M.; Rowan, Andrea; Longfield, Kim (2022). "Barriers and Enablers Influencing Women's Adoption and Continuation of Vaginally Inserted Contraceptive Methods: A Literature Review". Studies in Family Planning. 53 (3): 455–490. doi:10.1111/sifp.12209. ISSN 0039-3665. PMC 9545114. PMID 35922382.
  10. ^ Moore, Lyndsey E.; Vucen, Sonja; Moore, Anne C. (2022). "Trends in drug- and vaccine-based dissolvable microneedle materials and methods of fabrication". European Journal of Pharmaceutics and Biopharmaceutics. 173: 54–72. doi:10.1016/j.ejpb.2022.02.013. PMID 35219862.
  11. ^ a b Krovi, Sai Archana; Johnson, Leah M.; Luecke, Ellen; Achilles, Sharon L.; van der Straten, Ariane (2021). "Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention". Advanced Drug Delivery Reviews. 176: 113849. doi:10.1016/j.addr.2021.113849. PMID 34186143. S2CID 235685856.
  12. ^ Fernández-Romero, José A.; Deal, Carolyn; Herold, Betsy C.; Schiller, John; Patton, Dorothy; Zydowsky, Thomas; Romano, Joe; Petro, Christopher D.; Narasimhan, Manjulaa (2015). "Multipurpose prevention technologies: the future of HIV and STI protection". Trends in Microbiology. 23 (7): 429–436. doi:10.1016/j.tim.2015.02.006. PMC 4490993. PMID 25759332.
  13. ^ a b c d Friend, David R.; Clark, Justin T.; Kiser, Patrick F.; Clark, Meredith R. (2013). "Multipurpose prevention technologies: Products in development". Antiviral Research. 100: S39–S47. doi:10.1016/j.antiviral.2013.09.030. ISSN 0166-3542. PMID 24188708.
  14. ^ "HIV and AIDS Epidemic Global Statistics". HIV.gov. Retrieved 2023-07-26.
  15. ^ "Sexually transmitted infections (STIs)". www.who.int. Retrieved 2023-07-26.
  16. ^ "Unintended Pregnancy | CDC". www.cdc.gov. 2023-06-15. Retrieved 2023-07-26.
  17. ^ Marfatia, Y. S.; Pandya, Ipsa; Mehta, Kajal (2015). "Condoms: Past, present, and future". Indian Journal of Sexually Transmitted Diseases and AIDS. 36 (2): 133–139. doi:10.4103/0253-7184.167135. PMC 4660551. PMID 26692603.
  18. ^ Malcolm, Rk; Boyd, P; McCoy, Cf; Murphy, Dj (2014). "Beyond HIV microbicides: multipurpose prevention technology products". BJOG: An International Journal of Obstetrics & Gynaecology. 121: 62–69. doi:10.1111/1471-0528.12852. PMID 25335842. S2CID 2507324.
  19. ^ Young Holt, B; Romano, J; Manning, J; Hemmerling, A; Shields, W; Vyda, L; Lusti-Narasimhan, M (2014). "Ensuring successful development and introduction of multipurpose prevention technologies through an innovative partnership approach". BJOG: An International Journal of Obstetrics & Gynaecology. 121: 3–8. doi:10.1111/1471-0528.12911. PMID 25335832.
  20. ^ "RFA-AI-11-016: Combined Multipurpose Strategies for Sexual and Reproductive Health (R21/33)". grants.nih.gov.
  21. ^ Bershteyn, Anna; Resar, Danielle; Kim, Hae-Young; Platais, Ingrida; Mullick, Saiqa (2023). "Optimizing the pipeline of multipurpose prevention technologies: opportunities across women's reproductive lifespans". Frontiers in Reproductive Health. 5. doi:10.3389/frph.2023.1169110. ISSN 2673-3153. PMC 10266103. PMID 37325241.
  22. ^ Young Holt, Bethany; Kiarie, James; Kopf, Gregory S; Nanda, Kavita; Hemmerling, Anke; Achilles, Sharon L (2020). "Bridging the gap: advancing multipurpose prevention technologies from the lab into the hands of women†". Biology of Reproduction. 103 (2): 286–288. doi:10.1093/biolre/ioaa085. ISSN 0006-3363. PMC 7401373. PMID 32657337.
  23. ^ "Multipurpose Prevention Technologies: Technology Landscape and Potential for Low- and Middle-Income Countries". Public Health Institute. 2021. Retrieved 2023-07-27.