This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (September 2021) (Learn how and when to remove this message)

In mathematics, the icosians are a specific set of Hamiltonian quaternions with the same symmetry as the 600-cell. The term can be used to refer to two related, but distinct, concepts:

Unit icosians

The 120 unit icosians, which form the icosian group, are all even permutations of:

In this case, the vector (abcd) refers to the quaternion a + bi + cj + dk, and φ represents the golden ratio (5 + 1)/2. These 120 vectors form the H4 root system, with a Weyl group of order 14400. In addition to the 120 unit icosians forming the vertices of a 600-cell, the 600 icosians of norm 2 form the vertices of a 120-cell. Other subgroups of icosians correspond to the tesseract, 16-cell and 24-cell.

Icosian ring

The icosians lie in the golden field, (a + b5) + (c + d5)i + (e + f5)j + (g + h5)k, where the eight variables are rational numbers. This quaternion is only an icosian if the vector (abcdefgh) is a point on a lattice L, which is isomorphic to an E8 lattice.

More precisely, the quaternion norm of the above element is (a + b5)2 + (c + d5)2 + (e + f5)2 + (g + h5)2. Its Euclidean norm is defined as u + v if the quaternion norm is u + v5. This Euclidean norm defines a quadratic form on L, under which the lattice is isomorphic to the E8 lattice.

This construction shows that the Coxeter group embeds as a subgroup of . Indeed, a linear isomorphism that preserves the quaternion norm also preserves the Euclidean norm.

References