FEniCS Project
Stable release0.7.2 (November 14, 2023; 7 months ago (2023-11-14)[1]) [±]
Operating systemLinux, OS X, Unix, WSL
Available inC++, Python
TypeScientific simulation software
LicenseGNU Lesser General Public License
Websitewww.fenicsproject.org

The FEniCS Project is a collection of free and open-source software components with the common goal to enable automated solution of differential equations. The components provide scientific computing tools for working with computational meshes, finite-element variational formulations of ordinary and partial differential equations, and numerical linear algebra.[2][3]

Design and components

The FEniCS Project is designed as an umbrella project for a collection of interoperable components. The core components are[4]

caption
A schematic overview of the FEniCS components and their interplay

DOLFIN, the computational high-performance C++ backend of FEniCS, functions as the main problem-solving environment (in both C++ and Python) and user interface. Its functionality integrates the other FEniCS components and handles communication with external libraries such as PETSc, Trilinos and Eigen for numerical linear algebra, ParMETIS and SCOTCH for mesh partitioning, and MPI and OpenMP for distributed computing.

As of May 2022, DOLFINx is the recommended user-interface of the FEniCS project.[5]

History

The FEniCS Project was initiated in 2003 as a research collaboration between the University of Chicago and Chalmers University of Technology. The following institutions are currently, or have been, actively involved in the development of the project

DOLFINx

Since 2019, the core components of the FEniCS project have received a major refactoring.[7] resulting in DOLFINx.[8] DOLFINx supports many new features not available in the old DOLFIN interface, including:


See also

References

  1. ^ https://fenicsproject.org/download/
  2. ^ "The FEniCS Project page". The FEniCS Project. Retrieved 28 July 2016.
  3. ^ Anders Logg; Kent-Andre Mardal; Garth N. Wells, eds. (2011). Automated Solution of Differential Equations by the Finite Element Method. Springer. ISBN 978-3-642-23098-1.
  4. ^ "Core components of the FEniCS Project". The FEniCS Project. Archived from the original on 4 November 2011. Retrieved 8 December 2011.
  5. ^ "The new DOLFINx solver is now recommended over DOLFIN". fenicsproject.discourse.group.
  6. ^ a b FEniCS Governance documents. Retrieved 28 July 2016.
  7. ^ "Roadmap 2019-2020 – FEniCS Project". fenicsproject.org. Archived from the original on 2019-06-07.
  8. ^ "DOLFINx: The next generation FEniCS problem solving environment". Retrieved 2024-04-04.
  9. ^ "Python FEM and Multiphysics Simulations with FEniCS and FEATool". featool.com. Retrieved 2017-06-28.
  10. ^ Abali, Bilen Emek (2017). Computational Reality | SpringerLink. Advanced Structured Materials. Vol. 55. doi:10.1007/978-981-10-2444-3. ISBN 978-981-10-2443-6.