Air gap in a variant of the E-I transformer design. The side view is on the left, the right picture is a close-up of the gapped area. The orientation of E- and I-shaped components changes in the different layers thus creating alternating gaps on both sides. The gaps inhibit the eddy currents (each E and I plate is insulated), but the magnetic flux (red) is able to pass through the remaining "bridges".

Air gap in magnetic circuits is a term used to define an intentional gap left in the magnetic material.[1]

In stationary devices, like inductors and transformers, the air gap is used for a few purposes:

The total gap is frequently made of a series of small gaps to limit the effect of eddy currents in the core.[5]

When one of the circuit-forming parts of the machine is moving in respect to another (for example, the rotor of an alternator or motor rotates while the stator is stationary), the gap is an obvious mechanical necessity and is typically detrimental to the performance of the machine, since extra power is required to overcome the added reluctance.[1] However, a larger air gap in a synchronous generator is associated with higher short circuit ratio, an often desirable trait.[6]

References

[edit]
  1. ^ a b c Considine & Considine 2013, p. 67.
  2. ^ Calvert 2001.
  3. ^ Terman 1955, p. 14.
  4. ^ Brooks 1931, pp. 320–321.
  5. ^ Pansini 1999, p. 312.
  6. ^ Boldea 2018, p. 314.

Sources

[edit]