Bor
  [He] 2s2 2p1
10 B
5
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Bor (β-rhombohedral)

Bor (β-rhombohedral)

Obecné
Název, značka, číslo Bor, B, 5
Cizojazyčné názvy lat. borum
Skupina, perioda, blok 13. skupina, 2. perioda, blok p
Chemická skupina Polokovy
Koncentrace v zemské kůře 3 až 10 ppm
Koncentrace v mořské vodě 4,6 mg/l
Vzhled Hnědočerná pevná látka
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 10,811
Atomový poloměr 90 pm
Kovalentní poloměr 84 pm
Van der Waalsův poloměr 192 pm
Elektronová konfigurace [He] 2s2 2p1
Oxidační čísla 3,2,1,-1,-5
Elektronegativita (Paulingova stupnice) 2,04
Ionizační energie
První 800,6 kJ·mol
Druhá 2427,1 kJ·mol
Třetí 3659,7 kJ·mol
Látkové vlastnosti
Krystalografická soustava Čtverečná
Molární objem 4,39×10−6 m3/mol
Mechanické vlastnosti
Hustota 2,08 g cm−3
Skupenství Pevné
Tvrdost 9,5
Tlak syté páry 100 Pa při 2822K
Rychlost zvuku 16 200 m/s
Termické vlastnosti
Tepelná vodivost 27,4 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání 2076 °C (2 349,15 K)
Teplota varu 3927 °C (4 200,15 K)
Skupenské teplo tání 507 KJ/mol
Skupenské teplo varu 52,2 KJ/mol
Měrná tepelná kapacita 1260 Jkg−1K−1
Elektromagnetické vlastnosti
Elektrická vodivost 5,10−6 S/m
Měrný elektrický odpor 106Ωm
Magnetické chování Paramagnetický
Bezpečnost
GHS07 – dráždivé látky
GHS07
[1]
Varování[1]
R-věty R22
Izotopy
I V (%) S T1/2 Z E (MeV) P
8B umělý 770 ms ε

β+

5,837 8Be
10B 19,9% je stabilní s 5 neutrony
11B 80,1% je stabilní s 6 neutrony
12B umělý 20,2 ms β 13,369 12C
13B umělý 17,33 ms β 99,714% 13,437 13C

β n 0,286% 18,314 12C
14B umělý 12,5 ms β 93,9% 20,664 14C

β n 6,1% 21,614 13C
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Beryllium B Uhlík

Al

Bor (též bór; chemická značka B, latinsky borium nebo borum) je nejlehčím z řady prvků III. hlavní skupiny prvků v periodické tabulce prvků. Patří mezi polokovy vysokým bodem tání i varu – svými vlastnostmi leží na hranici mezi kovy a nekovy.

Byl izolován roku 1808 Humphrym Davym, Gay-Lusacem a Luisem Jacquesem Thénardem v nepříliš vysoké čistotě a teprve roku 1824 ho Jöns Jakob Berzelius označil za samotný prvek.

Základní fyzikálně-chemické vlastnosti

Vyskytuje se ve dvou modifikacích – amorfní a kovové. Kovová modifikace patří mezi velmi tvrdé látky – dosahuje hodnoty 9,3 v Mohsově stupnici tvrdosti.

Výroba

Elementární bor lze připravit redukcí oxidu boritého kovovým hořčíkem nebo hliníkem.

př.: B2O3 + 3Mg → 2B + 3MgO

Pro zisk velmi čistého polokovu se využívá redukce vodíkem. Příprava čistého boru je náročná a obtížná procedura. Čistý bor se v praxi používá minimálně.

2 BBr3 + 3 H2 → 2 B + 6 HBr

Používá se také elektrolytická výroba boru, a sice elektrolýza roztavených boritanů

Výskyt v přírodě

Elementární bor se v přírodě prakticky nevyskytuje, lze se s ním setkat pouze ve sloučeninách. Největší světová naleziště surovin boru leží v USA, Peru, Tibetu a Turecku. Sloučeniny boru jsou v malém množství obsaženy i v mořské vodě (v koncentraci přibližně 5 mg/l) a v některých minerálních pramenech. Kyselina boritá je obvykle přítomna v sopečných plynech, z nichž může být získávána.

Z potravin je přítomen především v ovoci, zelenině, luštěninách a oříškách.[2]

Biologický význam

V rostlinách je bor mikrobiogenním prvkem. Jako ostatní minerály je přijímán z vodypůdě, ale jako jediný nikoli ve formě iontů, ale jako elektroneutrální kyselina boritá (H3BO3). Bor se váže na cis-hydroxylové (diolové) skupiny pektinu rhamnogalakturonanu II, což je polysacharid důležitý pro stavbu buněčné stěny rostlin.[3] Pravděpodobně ovlivňuje vlastnosti buněčné stěny a především její pružnost a s tím související schopnost růst. To je důležité i u rychle rostoucí pylové láčky nebo u kořenových špiček a právě u nich se nedostatek boru u rostlin projevuje nejdříve. Pylové láčky nejsou bez boru schopné normálního růstu.[4]

Živočichové zpravidla nedostatkem boru netrpí, ale i u nich hraje důležitou roli v řadě fyziologických procesů. Při krmení kuřat či krys potravou bez boru dochází k poruchám ve vývoji kostí, metabolismu minerálních látek, vývoji mozku, funkci imunitního systému či uvolňování inzulinu. Nejvýraznější následky nedostatku boru se projevují při současném nedostatku vápníku či hořčíku.[2]

Využití

Borax

Bor se využívá ve sklářství jako přísada do skelných vláken a borokřemičitanových skel pro dosažení vysoké tepelné odolnosti, dále v keramice k výrobě emailů a glazur. Uplatňuje se při výrobě mýdel a detergentů, v metalurgii neželezných kovů a žáruvzdorných materiálů.

Využívá se i v jaderné energetice. Jeho jedinečné jaderné využití je založeno na velkém účinném průřezu izotopu 10B vůči tepelným neutronům a je výhodné i proto, že produkty reakce jsou stálé neradioaktivní Li a He. Takto se využívá bor, podobně jako beryllium, k výrobě řídicích tyčí v reaktorech a neutronových zrcadel v jaderných reaktorech. Bor je jeden z mála prvků, které přicházejí v úvahu jako palivo pro jadernou fúzi.[5]

Bor a jeho sloučeniny barví plamen intenzivně zeleně. Tento jev se uplatňuje při přípravě směsí pro pyrotechnické účely a v analytické chemii slouží jako důkaz přítomnosti boru v analyzovaném vzorku.

Významné místo patří sloučeninám boru ve sklářském a keramickém průmyslu. Tzv. borosilikátová skla se vyznačují vysokou tepelnou odolností a pod označením Pyrex (v Česku Simax) slouží k výrobě chemického i kuchyňského nádobí. V keramice nalézá bor uplatnění především jako složka glazur.

Směs neodymu, železa a boru je využívána pro výrobu permanentních NdFeB magnetů s vynikajícími vlastnostmi.

Sloučeniny

Odkazy

Reference

  1. a b Boron. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-24]. Dostupné online. (anglicky) 
  2. a b NIELSEN, Forrest H. Boron in human and animal nutrition. Plant and Soil. 1997-06-01, roč. 193, čís. 1–2, s. 199–208. Dostupné online [cit. 2016-03-27]. ISSN 0032-079X. DOI 10.1023/A:1004276311956. (anglicky) 
  3. MATOH, Toru; KOBAYASHI, Masaru. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. Journal of Plant Research. 1998-03-01, roč. 111, čís. 1, s. 179–190. Dostupné online [cit. 2016-03-26]. ISSN 0918-9440. DOI 10.1007/BF02507164. (anglicky) 
  4. YANG, X.; LI, Y. Boron plays an important role in the regulation of plant cell growth. Tsinghua Science and Technology. 1999-09-01, roč. 4, čís. 3, s. 1583–1586. Dostupné online [cit. 2016-03-26]. 
  5. http://server.ipp.cas.cz/~vwei/work/diplomova_prace.pdf[nedostupný zdroj]
  6. NAGAMATSU, Jun; NAKAGAWA, Norimasa; MURANAKA, Takahiro. Superconductivity at 39 K in magnesium diboride. Nature. 2001-03, roč. 410, čís. 6824, s. 63–64. Dostupné online [cit. 2020-03-14]. ISSN 0028-0836. DOI 10.1038/35065039. (anglicky) 

Související články

Literatura

Externí odkazy