Овај чланак можда захтева чишћење и/или прерађивање како би се задовољили стандарди квалитета Википедије. Проблем: правопис итд.. Ако сте у могућности, побољшајте овај чланак. (детаљније о уклањању овог шаблона обавештења)

x86-64 (такође познат и као x64, x86 64 и amd64) је 64-битна верзија скупа инструкција x86. Он подржава далеко веће количине виртуелне и физичке меморије него што је то могуће код претходника, омогућавајући програмима складиштење веће количине података у меморији. x86-64 такође пружа 64-битне регистре опште намене и бројне друге побољшања. Оригиналну спецификацију је направио АМД, а спроведена је од стране АМД-а, Интела, VIА, и других. Потпуно је компатибилан са 16-битним и 32-битним x86 кодом.[1] Пошто су потпуни 16-битни и 32-битни скупови инструкција остали имплементирани у хардверу без икакве емулације, постојећи x86 програми раде без проблема у компатибилности или лошијих перформанси[2], док постојеће апликације које користе нове карактеристике дизајна процесора могу постићи побољшања перформанси.

Пре избацивања, "x86-64" и "x86_64" су се односили на скуп инструкција. После избацивања, АМД је назван АМД64.[3] Intel initially used the names IA-32e and EM64T before finally settling on Intel 64 for their implementation. Some in the industry, including Apple,[4][5][6] Интел је у почетку користио имена ИА-32Е и ЕМ64Т пре коначног решења да се користи име Интел 64 за њихово спровођење. Неки у индустрији, укључујући и Епл, користити x86-64 и x86_64, док други, посебно Сан Мајкросистемс (сада Оракл) и Мајкрософт, користе x64 док BSD породица оперативних система и неколико Линукс дистрибуција користе АМД64.

АМД К8 процесор је први имплементирао архитектуру, и ово је био први значајан додатак x86 архитектури коју је дизајнирала нека компанија осим Интела. Интел је био принуђен да следи тај пример и увео је модификовану НетБрст (енгл. NetBurst) породицу која је била потпуно софтверски компатибилана са дизајном и спецификацијама АМД-а. VIА Текнолоџис (енгл. VIA Technologies) је представио x86-64 у својој VIА Исаја (енгл. Isaiah) архитектури, са VIА Нано.

x86-64 спецификација се разликује од Интелове Итаниум (раније ИА-64) архитектуре, чији скуп инструкција није компатибилан са x86 архитектуром.

АМД64

[уреди | уреди извор]
AMD64 logo

Скуп инструкција из АМД64 је имплементиран у АМД-овом Оптерону, Атлон64, Атлон 64 FX, Атлон64 X2, Атлон II, Атлон X2, Турион 64, Турион 64 X2, касније и Семпрон, Феном, Феном II, FX, и Фјужн (енгл. Fusion) процесорима.

Историја АМД64

[уреди | уреди извор]

АМД64 је настао као алтернатива радикално другачије ИА-64 архитектуре, која је дизајниран од стране компаније Интел и ХП. Првобитно објављена у 1999[7] са пуном спецификацијом у августу 2000,[8] АМД64 архитектура је направљена да се дода 64-битно рачунарство на постојећу x86 архитектуру, за разлику од Интеловог стварања потпуно нове 64-битну архитектуру са ИА-64.

Први АМД64 процесор, Оптерон, је избачен у априлу 2003.

Карактеристике архитектуре

[уреди | уреди извор]
AMD64 регистри
63 ... 47 ... 31 ... 15 ... 07 ... 00 (позиција бита)
Главни регистри (8/16/32/64 бита)
RAX EAX AX AL A регистар
RBX EBX BX BL B регистар
RCX ECX CX CL C регистар
RDX EDX DX DL D регистар
Индексни регистри (16/32/64 бита)
RSI ESI SI Source Index
RDI EDI DI Destination Index
Стек регистри (16/32/64 бита)
RBP EBP BP Base Pointer
RSP ESP SP Stack Pointer
Додатни регистри (64 бита)
R8 регистар 8
R9 регистар 9
R10 регистар 10
R11 регистар 11
R12 регистар 12
R13 регистар 13
R14 регистар 14
R15 регистар 15
Показивач инструкције (16/32/64 бита)
RIP EIP IP Instruction Pointer
Сегментни регистри (16 бита)
CS Code Segment
DS Data Segment
ES Extra Segment
FS F Segment
GS G Segment
SS Stack Segment
XMM (SSE) регистри (128 бита)
XMM0 (128 бита) регистар 0
XMM1 (128 бита) регистар 1
XMM2 (128 бита) регистар 2
XMM3 (128 бита) регистар 3
XMM4 (128 бита) регистар 4
XMM5 (128 бита) регистар 5
XMM6 (128 бита) регистар 6
XMM7 (128 бита) регистар 7
XMM8 (128 бита) регистар 8
XMM9 (128 бита) регистар 9
XMM10 (128 бита) регистар 10
XMM11 (128 бита) регистар 11
XMM12 (128 бита) регистар 12
XMM13 (128 бита) регистар 13
XMM14 (128 бита) регистар 14
XMM15 (128 бита) регистар 15
Статусни регистар
17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 (позиција бита)
V R 0 N IOPL O D I T S Z - A - P - C EFlags

Примарна карактеристика АМД64 је доступност 64-битних процесорских регистара, на пример rax, rbx и слично, 64-битне аритметичке и логичке операције целим бројем, и 64-битни виртуелне адресе. Дизајнери су искористили прилику да направе и друга побољшања. Најзначајније промене укључују:

То значи да се над веома великим датотекама може бити оперисан преко мапирања целог фајла у адресни простор процеса (што је често много брже него рад позивима читања и писања), уместо мапирања региона датотеке у и ван адресног простора.

Сегментирано адресирање је дуго сматрано застарелим начином рада, а сви актуелне ПЦ (PC) оперативни системи на снази заобилазе га, постављајући све сегменте на базну адресу нуле и (у 32-битној имплементацији) величине 4 GB. АМД је први продавац породице x86 који је спровео "no-execute" у линеарном моду адресирања. Функција је такође доступна у легаси режиму на АМД64 процесорима, а однедавно и на Интел x86 процесорима, када се користи ПАЕ.

Детаљи виртуелног адресног простора

[уреди | уреди извор]

Канонска форма адресирања

[уреди | уреди извор]

Иако су виртуелне адресе ширине 64 бита у 64-битном режиму, актуелне имплементације (и сви чипови за које се зна да су у фази планирања) не дозвољавају да се цео виртуелни адресни простор од 264 бајтова (16 ЕБ) користи. Већини оперативних система и апликација неће требати толики адресни простор за догледну будућност (на пример, Windows имплементација за АМД64 су користи само 16 ТБ, или 44 бита), па спровођење такве широке виртуелне адресе ће једноставно повећати сложеност и Трошкови без стварне користи. АМД је стога одлучио да, у првим имплементацијама архитектуре, само најмање значајних 48 бита виртуелне адресе би преводилац адреса заправо користио. Даље, од бита 48 до 63 сви морају бити копија бита 47, или процесор ће подићи изузетак. Адресе које испуњавају ово правило се називају "канонске форме." Адресе канонске форма иду од 0 до 00007FFF'FFFFFFFF и од FFFF8000'00000000 до FFFFFFFF'FFFFFFFF, за укупно 256ТБ употребљивог виртуелног адресног простора.

Ово омогућава важну функцију за каснију скалабилност на право 64-битно адресирање: многим оперативним системима (укључујући Windows НТ породицу) узима вишу половину простора адреса (назван kernel простор) за себе и оставља доњу половину (кориснички простор) за апликациони код, корисничке стекове, хипове и друге регионе података. Дизајн "канонске адресе" обезбеђује да свака компатибилна имплементација АМД64 има две меморијске половине: доња половина почиње на адреси 00000000'00000000 и "расте нагоре" како више виртуелних адреса постану доступни, док је виша половина "усидрена" на врх адресе простора и расте надоле. Такође, фиксирање садржаја неискоришћене бит-них адреса спречава њихову употребу од стране оперативног система као flag, privilege markers, итд, зато што би таква употреба могла да постане проблематична када је архитектура проширена да спроводи више битова виртуелних адреса.

Тренутна 48-битна имплементација

56-битна имплементација

Пуна 64-битна имплементација

Page table структура

[уреди | уреди извор]

Дуги режим 64-битног адресирања ("long mode") је надскуп Physical Address Extensions (ПАЕ), због тога, величина страница може бити 4 КБ (212 бајтова) или 2 MB (221 бајт). Дуги режим такође подржава странице величине 1 GB (230 бајтова). Уместо page table система на три нивоа којег користе системи у ПАЕ режиму, системи који раде у дугом моду користи четири нивоа page table: ПАЕ-ов Page-Directory Pointer Table продужен је од 4 уноса до 512, а додатна Page-Map Level 4 (ПМЛ4) табела се додаје, која садржи 512 ставки у 48-битним имплементацијама. У имплементацијама које пружају веће виртуалне адресе, потоња табела би расла или да задовољи довољне уносе да опише цео ранг адреса, до теоријског максимума од 33.554.432 уноса за 64-битну имплементацију, или ће бити преранкирани новим нивоом за мапирање као што је ПМЛ5. Пуна хијерархија мапирања страница од 4 MB за цели 48-битни простор би заузео више од 512 MB РАМ-а (око 0,196% од 256 ТБ целог виртуелног простора)

Границе оперативних система

[уреди | уреди извор]

Оперативни систем такође може ограничити виртуални простор за адресирање. Детаљи су дати у одељку „Компатибилност са оперативним системима и карактеристике“.

Детаљи физичког адресног простора

[уреди | уреди извор]

Тренутне АМД64 имплементације подржавају физички адресни простор до 248 бајтова РАМ-а или 256 ТБ. Већа количина инсталираног РАМ-а омогућава оперативном систему да држи више "pageable" података и кода у РАМ-у, што може побољшати перформансе, мада ће различита оптерећења имати различите тачке умањујућих повратка.

Горња граница меморије која се може користити у датом x86-64 систему зависи од разних фактора и могу бити далеко мање него максимум процесора. На пример, од јуна 2010, нема познатих матичних плоча за x86-64 процесором који подржавају 256 ТБ РАМ меморије. Оперативни систем може да постави додатна ограничења на количину РАМ који је употребљив или подржан. Детаљи о овоме су дати у одељку тачки су дате у " Компатибилност са оперативним системима и карактеристике ".

Режими рада

[уреди | уреди извор]
Режим рада Радни подрежим Оперативни систем Тип кода Подразумевана величина адресе Подразумевана величина операнада Типично подржане величине операнада Register file величина Типична GPR ширина
Дуги режим 64-битни режим 64-битни оперативни систем 64-битни код 64 бита 32 бита 8, 16, 32, или 64 бита 16 регистра по фајлу 64 бита
Режим компатибилности 64-битни оперативни систем 32-битни код у заштићеном режиму 32 бита 32 бита 8, 16, или 32 бита 8 регистра по фајлу 32 бита
64-битни оперативни систем 16-битни код у заштићеном режиму 16 бита 16 бита 8, 16, или 32 бита 8 регистра по фајлу 32 бита
Легаси режим Заштићени режим 32-битни оперативни систем 32-битни код у заштићеном режиму 32 бита 32 бита 8, 16, или 32 бита 8 регистра по фајлу 32 бита
16-битни или 32-битни оперативни систем 16-битни код у заштићеном режиму 16 бита 16 бита 8, 16, or 32 бита 8 регистра по фајлу 16 или 32 бита
Виртуелни 8086 режим 16-битни или 32-битни оперативни систем 16-битни код у реалном режиму 16 бита 16 бита 8, 16, или 32 бита 8 регистра по фајлу 16 или 32 бита
Реални режим 16-битни или 32-bit оперативни систем 16-битни код у реалном режиму 16 бита 16 бита 8, 16, или 32 бита 8 регистра по фајлу 16 или 32 бита

Традиционални x87 ФПУ регистарски стек није укључен у екстензији регистара величине фајлова у 64-битном режиму.

State diagram of x86-64 operating modes

Дуги режим

[уреди | уреди извор]

Ово је примарни начин рада архитектуре. То је комбинација процесоровог "нејтив" (енгл. native) 64-битног режима и комбинованог 32 и 16-битног режима. Користе га 64-битни ОС-и. Под 64-битним оперативним системом, 64-битни програми раде у 64-битном режиму, а 32-битни и 16-битни заштићени режим апликације (које не морају да користите стварни или виртуелни 8086 режим како би се извршио било кад) ради у режиму компатибилности. Real-mode програми и програми који користе виртуелни 8086 режим у било ком тренутку не може да се покрену у дугом моду, осим ако није у питању емулирање софтвера.

Пошто је основни скуп инструкција исти, скоро да не постоји умањење перформанси у заштићеном режиму x86 кода. Ово је другачије од Интеловог ИА-64, где разлике у основном скупу инструкција значи да рад 32-битног кода се мора урадити или емулацијом x86 (што чини процес споријим) или са наменском x 86 процесором. Међутим, на платформи x86-64, многе апликације могу да имају користи од 64-битног рекомпајлирања, због додатних регистара у 64-битном коду и гарантоване ССЕ2 ФПУ подршке, коју могу да користе компајлер за оптимизацију. Међутим, апликацијама које редовно рукују целим бројевима ширим од 32 бита, као што су криптографски алгоритми, биће потребно прерађивање кода како би искористиле предности 64-битних регистара.

Легаси режим

[уреди | уреди извор]

Режим користи 16-бита ("заштићени мод" или "прави мод") и 32-битне оперативне системе. У овом режиму, процесор се понаша као 32-битни x86 процесор, а само 16-битни и 32-битни код може бити извршен. Легаси режим омогућава максимално 32-битно виртуелно адресирање који ограничава виртуелни адресни простор на 4 GB. 64-битни програми се не могу покренути из овог режима.

АМД64 имплементације

[уреди | уреди извор]

Следећи процесори имплементирају АМД64 архитектуру:

Интел 64

[уреди | уреди извор]

Интел 64 је Интелова имплементација x86-64. Коришћен је у новијим верзијама Пентијума 4, Целерон Д, Ксеон и Пентијум Дуал Кор (енгл. Pentium Dual-Core) процесора, Атом 230, 330, D410, D425, D510, D525, N450, N455, N470, N475, N550, N570, N2600 и N2800 и све верзије Пентиум Икстрим Едишн (енгл. Pentium Extreme Edition), Кор 2 (енгл. Core 2), Кор и7, Кор и5, Кор и3 процесора.

Историја Интела 64

[уреди | уреди извор]

Кроз историју, АМД је развијао и правио процесоре по Интеловом дизајну, али са појавом x86-64 улоге су замењене. Интел се нашао у ситуацији где је прихватио архитектуру коју је АМД направио као екстензију Интелове x86 процесорске линије. Интелов пројекат је оригинално назван Јамхил (енгл. Yamhill). Након година негирања постојања радова на овом пројекту, Интел је објавио да он заправо постоји. Крег Берет, ПУО Интела у то време, је признао да је ово једна од најлошије чуваних тајни.

Интелов назив за овај скуп инструкција је променио неколико пута. Крајем 2006 Интел је почео користити име Интел 64 за његово спровођење, као што АМД користи АМД64.

Имплементације Интела 64

[уреди | уреди извор]

Први процесор који је имплементирао Интел 64 је био Ксеон са кодним именом Нокона (енгл. Nocona), јуна 2004. Насупрот томе, почетни Прескот чипови (фебруара 2004) нису омогућили ову функцију. Интел је касније почео са продајом Пентијум 4, са овом функцијом омогућеном. Е0 ревизија додаје eXecute Disable (ЕД), и био је укључен у тадашње Ксеон процесоре са кодним именом Ирвиндејл (енгл. Irwindale). Све 9xx, 8xx, 6xx, 5x9, 5x6, 5x1, 3x6, и 3x1 серије процесора имају Интел 64, као и Кор 2 ЦПЈ као што ће и будући процесори имати. Интел 64 је присутан и у последњим верзијама Целерон Д линије.

Први Интел мобилни процесор са Интел 64 је Мером верзија Кор 2 процесора, која је избачена 27. јула 2006. Ниједан од Интелових пртходних ЦПЈ није имплементирао Интел 64.

Следећи процесори имају Интел 64 архитектуру:

VIА-ина имплементација

[уреди | уреди извор]

VIА Нано, ранија знана као VIА Исаја (VIA Isaiah) је 64-битни процесор за личне рачунаре. VIА Нано је избачена од компаније VIА Текнолоџис (енгл. VIA Technologies) 2008. након 5 година развоја. Ова нова архитектура је започета испочетка, и објављена је 24. јануара 2008. Процесор подржава неколико специфичних екстензија за поправљање ефикасности у применама са слабом снагом. Очекује се да ће VIА Исаја бити дупло бржа у рачунању са целим бројевима и 4 пута бржа у рачунању са покретним зарезом од VIА Естер при еквивалентом такту. Потрошња енергије је слична као претходне генерације БИА ЦПЈ, са снагом од 5 W до 25 W. Исаја је направљена да подржи функције као што је x86-64 скуп инструкција и x86 виртуелисање, који нису били доступни у пређашњим верзијама, VIА Ц7 линији.

Разлике између АМД 64 и Интел 64

[уреди | уреди извор]

Иако скоро идентични, постоје неке разлике између одва два скупа инструкција у семантици неколико ретко коришћених машинских инструкција (и/или ситуација), који се углавном користе за системско програмирање. Компајлери углавном праве машински код, који избегава било какве различитости, бар за обичне апликационе програме. Ово је стога интересантно углавном програмерима компајлера, оперативних система, и слично, који морају да се баве индивидуалним и специјалним системским инструкцијама.

Скорашње имплементације

[уреди | уреди извор]

Старије имплементације

[уреди | уреди извор]

Компатибилност са оперативним системима и карактеристике

[уреди | уреди извор]

Следећи оперативни системи подржавају x86-64 архитектуру у дугом режиму.

BSD

[уреди | уреди извор]

DragonFly BSD

[уреди | уреди извор]

Прелиминарни инфраструктурни рад је започео у фебруару 2004. за x86-64 порт. Овај развој је касније застао. Развој је почео поново током јула 2007 и наставио током Гугловог лета кода 2008. и СОЦ 2009. Прва званична верзија која је подржавала x86-64 је била 2.4.

FreeBSD

[уреди | уреди извор]

FreeBSD је додао подршку под именом амд64 као екпериментална архитектура у 5.1 верзији у јуну 2003. Био је садржан у стандардној дистрибуцији од 5.2 јануара 2004. Верзија 6.0 је средила неке проблеме са радом x86 на амд64, и већина драјвера ради нормално, као на x86 архитектури.

Нет BSD

[уреди | уреди извор]

Овде је архитектура x86-64 први пут добила подршку 19. јуна 2001. Од NetBSD 2.0, амд64 је у потпуној интеграцији са овим системом. 32-битни код је подржан у 64-битном режиму, са netbsd-32 kernel слојем за компатибилност за 32-битне системске позиве. NX бит је коришћен за обезбеђивање неизвршивог стека и хипа са гранулацијом по страни (сегментирано гранулирање се користи на 32-битној x86)

ДОС

[уреди | уреди извор]

Могуће је ући у дуги режим у ДОС-у без ДОС екстендера, али се кориник мора вратити на реалан режим да би позвао БИОС или ДОС прекиде.

Дакође је могуће ући у дуги режим, са ДОС екстендером сличним DOS/4GW, али комплекснији јер x86-64 нема виртуелни 8086 режим. ДОС то не зна, и не треба очекивати предности, осим ако ДОС ради у емулацији са адекватним драјвером за виртуелисање, на пример интерфејс за масовно складиштење.

Linux

[уреди | уреди извор]

Linux је био први ОС који је покренуо x86-64 у дугом режиму, почев од верзије 2.4 2001. Линук такође обезбеђује компатибилност за покретање 32-битних програма. Ово омогућава да се програми рекомпајлирају у дугом режим задржавајући коришћење 32-битних програма. Неколико Linux дистрибуција се тренутно испоручује са x86-64-native kernel-. Неки, као што су Arch Linux, SuSE, Мандрива, и Дебиан ГНУ/Линукс, омогућавају корисницима да инсталирају скуп 32-битних компоненти и библиотека приликом инсталирања са 64-битног DVD-а, што омогућава да већина постојећих 32-битних апликације ради. Друге дистрибуције, као што су Федора, Слеквер и Убунту, доступни су у једној верзији компајлирану за 32-битну архитектуру и другу компајлирану за 64-битну архитектуру. Федора и Ред Хет Ентерпрајс Линукс дозвољава истовремену уградњу свих усерланд компоненти у 32 и 64-битне верзије на 64-битном систему.

x32 ABI (Application Binary Interface), уведен у Линук 3.4, омогућава програмима компајлираним за x32 ABI да ради у 64-битном режиму x86-64, док користи само 32-битне показиваче и поља података. Иако ово ограничава програм на виртуелни адресни простор од 4 GB такође се смањује меморијски отисак програма и у неким случајевима може дозволити да ради брже.

64-битни Линукс дозвољава до 128 ТБ виртуелне адресе за појединачне процесе, и може да адресира око 64 ТБ физичке меморије, под условом да нема процесорских и ограничења система.

ОС Х

[уреди | уреди извор]

Мак ОС Х v10.4.7 и даље верзије v10.4 покрећу 64-битне командне алатке користећи POSIX и математичке библиотеке на 64-битним Интел машинама, као што све верзија 10.4 и 10.5 раде на 64-битним PowerPC машинама. Мак ОС Х подржава 64-битне ГУИ апликацје користећи Кокоа, Кварц, ОПЕНГЛ, и X11 на 64-битним Интел машинама, као и на 64-биотним PowerPC машинама. Све библиотеке које нису за ГУИ такође подржавају 64-битне апликције на тим платформама. Кернел, и све ектензије су само 32-битне.

Мак ОС Х 10.6 је прва верзија која подржава 64-битни кернел. Међутим, не могу сви 64-битни рачунари покренути 64-битни кернел. 64-битни кернел, као 32-битни кернел, подржава 32-битне апликације, оба језгра такође подржавају 64-битне апликације. 32-битне апликације имају ограничени виртуелни адресни простор на 4 GB испод оба језгра. ОС Х 10.8 обухвата само 64-битни кернел, али наставља да подржава 32-битне апликације.

ОС Х користи универзални бинарни формат за пакетирање 32 и 64-битне верзије апликације и библиотекарског кода у једној датотеци, најприкладнија верзија се аутоматски бира у време учитавања. У Мек ОС Х 10.6, универзални бинарни формат се такође користи за кернел и за оне екстензије кернела који подржавају 32-битне и 64-битне кернеле.

Соларис

[уреди | уреди извор]

За Соларис 10, баш као и са SPARC архитектуру, постоји само један слика оперативног система, која садржи 32-битни и 64-битни кернел, и означено је као "x64/x86" DVD-РОМ слика. Подразумевано понашање је да се покрене 64-битни кернел, омогућавајући да се и 64-битни и постојећи или нови 32-битни програми бити покренути. 32-битни кернел се може ручно изабрати, у ком случају ће само 32-битни програми радити. Команда isainfo може да се користи за утврђивање да ли систем ради под 64-битном кернелу.

За Соларис 11, само 64-битни кернел је обезбеђен. Међутим, 64-битни кернел подржава и 32 и 64-битне програме, библиотеке, и системске позиве.

Windows

[уреди | уреди извор]

x64 клијент и сервер издања система Мицрософт Windows, Windows XP Professional и Windows Сервер 2003 x64 Едитион су пуштени марта 2005. Интерно они су заправо исти буилд (5.2.3790.1830 SP1), јер деле исту изворну базу и оперативног система, па чак и ажурирања система су пуштена у обједињене пакете, као Windows 2000 Профешнал и Сервер издања за x86. Windows Виста, који такође има много различитих издања, објављена је у јануару 2007. Windows 7 је пуштен у јулу 2009. Windows Сервер 2008 Р2 и новије верзије ће бити доступане само као x64 верзије. Windows за x64 има следеће карактеристике:

Ово је увећање од 4096 за дифолтна 2 GB виртуелног адресног простора корисничког режима које нуди 32-битни Windows.

За разлику од употребе боот опције / 3 GB на к86, ово не умањује кернел-режим-виртуелног адресног простора на располагању оперативном систему. 32-битне апликације стога могу имати користи одпокретање на x64 Windowsу, чак и ако нису рекомпајлиране за x86-64.

Конзоле за видео игре

[уреди | уреди извор]

ПлејСтејшн 4 и ИксБокс Један садрже Јагуар, вишејезграни процесор кога је дизајнирао АМД. Оба користе x86-64 да адресирају 8 GB РАМ-а.

Конвенције за називе у индустрији

[уреди | уреди извор]

Пошто су АМД64 и Интел 64 суштински слични, многи софтверски и хардверски производи користе један израз да искажу своју компатибилност са обе имплементације. АМД-ов оригинални назив за ову процесорску архитектуру, " x86-64", се још увек користи за ову сврху, као и варијанта "x86_64". Друге компаније, као што су Мајкрософз и Сан Мајкросистемс/Оракл, користе израз "x64" у маркетиншким материјалима.

Многи оперативни системи и производи, посебно оне која су ушли на тржиште x86-64 пре уласка Интела на тржиште, користе термин "АМД64" или "амд64" да се односи и на АМД64 и Интел 64.

Проблеми са лиценцирањем

[уреди | уреди извор]

Интел лиценцира АМД-у право да користи оригиналну архитектуру x86 на којима се заснива АМД x86-64. У 2009, АМД и Интел су решили неколико тужби и неслагања око унакрсног-лиценцирања, проширујући своје уговоре унакрсног-лиценцирања.

Референце

[уреди | уреди извор]
  1. ^ Corporation, AMD (2011). „Volume 2: System Programming” (PDF). AMD64 Architecture Programmer's Manual. AMD Corporation. Приступљено 29. 10. 2011. 
  2. ^ Corporation, IBM (6. 9. 2007). „IBM WebSphere Application Server 64-bit Performance Demystified” (PDF). стр. 14. Архивирано из оригинала (PDF) 25. 01. 2022. г. Приступљено 9. 4. 2010. „"Figures 5, 6 and 7 also show the 32-bit version of WAS runs applications at full native hardware performance on the POWER and x86-64 platforms. Unlike some 64-bit processor architectures, the POWER and x86-64 hardware does not emulate 32-bit mode. Therefore applications that do not benefit from 64-bit features can run with full performance on the 32-bit version of WebSphere running on the above mentioned 64-bit platforms." 
  3. ^ „Debian AMD64 FAQ”. Debian Wiki. Архивирано из оригинала 26. 09. 2019. г. Приступљено 3. 5. 2012. 
  4. ^ „x86-64 Code Model”. Apple. Приступљено 23. 11. 2012. 
  5. ^ arch(1) – Darwin and macOS General Commands Manual
  6. ^ Kevin Van Vechten (9. 8. 2006). „re: Intel XNU bug report”. Darwin-dev mailing list. Apple Computer. Архивирано из оригинала 01. 02. 2020. г. Приступљено 5. 10. 2006. „The kernel and developer tools have standardized on "x86_64" for the name of the Mach-O architecture 
  7. ^ „AMD Discloses New Technologies At Microporcessor Forum” (Саопштење). AMD. 5. 10. 1999. Приступљено 9. 11. 2010. 
  8. ^ „AMD Releases x86-64 Architectural Specification; Enables Market Driven Migration to 64-Bit Computing” (Саопштење). AMD. 10. 8. 2000. Приступљено 9. 11. 2010. 

Спољашње везе

[уреди | уреди извор]