Rappresentazione di un elettromagnete

L'elettromagnete, chiamato anche elettrocalamita, è un elemento elettrotecnico costituito da un nucleo in materiale ferromagnetico (di solito ferro dolce) su cui è avvolto un solenoide, ovvero una bobina di molte spire di filo elettrico. Lo scopo dell'elettromagnete è di generare un campo magnetico da una corrente elettrica e si differenzia per questo dall'induttore, dove il fenomeno dell'induttanza è sfruttato per accumulare energia.

Il primo elettromagnete fu costruito nel 1824 dall'ingegnere britannico William Sturgeon (1783 - 1850), come diretta conseguenza delle relazioni tra correnti e magnetismo scoperte pubblicate da Hans Christian Ørsted del 1820. Un ruolo fondamentale nello studio e nello sviluppo di questo dispositivo elettrico si deve al fisico statunitense Joseph Henry .

Elettromagnete usato per la raccolta del ferro, 1914 circa
Elettromagnete usato come campanella

Caratteristiche

[modifica | modifica wikitesto]

L'intensità del campo magnetico generato può essere calcolata con le regole dell'induzione magnetica ed essenzialmente:

Per quanto riguarda la forza sviluppata dal campo magnetico, la sua intensità diminuisce con il quadrato della distanza tra le parti, per questo l'elettromagnete è efficace solo a breve distanza.

Se la bobina è alimentata con una corrente variabile, il campo magnetico è a sua volta variabile e così la forza prodotta.

Questo è alla base del funzionamento dei comuni altoparlanti magnetodinamici.
Nel calcolo degli elettromagneti a correnti variabili si deve tenere conto anche dell'effetto dell'induttanza alle diverse frequenze. Inoltre, per evitare la formazione di correnti parassite nel nucleo, questo è realizzato con sottili lamierini piuttosto che un blocco compatto, esattamente come nel trasformatore.

Alte intensità di campo

[modifica | modifica wikitesto]

In alcune applicazioni, come l'accelerazione particelle elementari, levitazione magnetica, risonanza magnetica nucleare ed altro, è necessario avere a disposizione campi magnetici di intensità eccezionale. Per questo scopo si utilizzano due categorie di elettromagneti:

Super elettromagneti classici

[modifica | modifica wikitesto]

Si tratta di elettromagneti costruiti con normali conduttori, ma per produrre campi intensi si devono superare alcuni problemi:

Per i motivi elencati gli elettromagneti non superconduttori sono adatti dove siano richiesti campi magnetici impulsivi, non permanenti.

Elettromagneti superconduttori

[modifica | modifica wikitesto]

Questi dispositivi si basano sul fenomeno della superconduttività per cui alcuni metalli perdono completamente la loro resistenza elettrica a temperature prossime allo zero assoluto, venendo così a mancare la perdita di energia per effetto Joule. Alcune leghe sono in grado di presentare lo stesso fenomeno a temperature più pratiche, intorno ai 100 K. Questi elettromagneti sono costituiti da una o più spire di cavo superconduttore immerse in un liquido refrigerante, nelle quali viene indotta un'elevatissima corrente, che poi permane per lungo tempo producendo un campo magnetico costante. L'intensità massima di campo magnetico producibile è di diversi tesla, di solito fino a 15 o 20.

Il limite principale di questi sistemi è il campo magnetico stesso, che oltre una certa soglia provoca la scomparsa dell'effetto superconduttore.

Magneti superconduttori sono usati in acceleratori di particelle come l'LHC del CERN.

Applicazioni

[modifica | modifica wikitesto]

Il campo magnetico può essere impiegato:

Elettromagneti applicati alle chiusure tecniche

[modifica | modifica wikitesto]

Intorno al 1980, il campo magnetico derivante da un Elettromagnete cominciò ad essere utilizzato in edilizia e, più esattamente, nel campo dei serramenti di sicurezza.

Un'azienda svizzera cominciò a produrre un'elettrocalamita, di dimensioni e peso molto contenuti, che alimentata a bassa tensione (12 Vdc - 24 Vdc) sviluppava un campo magnetico capace di resistere ad una forza di alcune migliaia di newton. Questo elettromagnete veniva inserito in un carter di alluminio affinché potesse essere fissato al montante di un telaio di una porta. Sull'anta della porta stessa veniva fissata una piastra di ferro trattato che doveva essere attratta dall'elettromagnete. In questo modo la porta sarebbe stata tenuta chiusa dall'elettromagnete quando alimentato ma si sarebbe sicuramente aperta in mancanza di alimentazione.

Questa applicazione ebbe subito un grande successo nel campo delle uscite di emergenza perché garantiva una sicurezza contro l'effrazione senza utilizzare delle parti meccaniche ma, allo stesso tempo, assicurava l'apertura della porta, senza l'intervento umano, in caso di mancanza di corrente.

L'evoluzione di questo sistema ha portato il settore edile ad utilizzare massicciamente l'elettromagnete come elemento di chiusura elettrico. Oggi viene utilizzato in svariati modi a seconda delle dimensioni, degli utilizzi, dei profili e del tipo di porta. Associato ad un sensore ad effetto Hall, il campo magnetico sviluppato dall'elettromagnete dà un segnale di stato dell'anta che lo rende particolarmente idoneo nel settore del controllo degli accessi.

La maggior parte degli elettromagneti di questo tipo sono costituiti da materiali isoperm.

Bibliografia

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]
Controllo di autoritàGND (DE4151832-9 · NDL (ENJA00561483