Regelmäßiges Siebeneck
Regelmäßiges Siebeneck

Das Siebeneck (auch Heptagon von altgriechisch ἑπτάγωνον heptágōnon, aus ἑπτά heptá, deutsch ‚sieben‘, und γωνία gōnía, deutsch ‚Ecke‘) ist eine geometrische Figur. Es gehört zur Gruppe der Vielecke (Polygone). Es ist definiert durch sieben Punkte. Sofern nichts anderes gesagt wird, ist von einem ebenen, regelmäßigen Siebeneck die Rede (siehe Bild), dessen sieben Seiten gleich lang sind und dessen sieben Eckpunkte auf einem gemeinsamen Umkreis liegen.

Mathematische Zusammenhänge

[Bearbeiten | Quelltext bearbeiten]

Formel für Winkelberechnungen

[Bearbeiten | Quelltext bearbeiten]

Der Zentriwinkel oder Mittelpunktswinkel wird von zwei benachbarten Umkreisradien eingeschlossen. Nach einer allgemeinen Formel gilt:

Die Summe der Innenwinkel des Siebenecks beträgt stets 900° und ergibt sich aus einer allgemeinen Formel für Polygone, in der für die Variable die Anzahl der Eckpunkte des Polygons eingesetzt werden muss (in diesem Fall: ):

Der Winkel, den zwei benachbarte Seitenkanten im ebenen, regelmäßigen Siebeneck miteinander einschließen, beträgt (wiederum nach einer allgemeinen Formel für regelmäßige Polygone):

Formel für die Fläche A

[Bearbeiten | Quelltext bearbeiten]

Ein Siebeneck besitzt einen eindeutig bestimmbaren Flächeninhalt, welcher sich stets durch Zerlegen in Dreiecke berechnen lässt. Die Fläche des regelmäßigen Siebenecks beträgt das Siebenfache der Fläche eines jener Dreiecke, die von seinem Mittelpunkt und je zwei benachbarten Eckpunkten aufgespannt werden.

oder mit dem Umkreisradius:

Formel für die Seitenlänge s

[Bearbeiten | Quelltext bearbeiten]

Näherungskonstruktionen

[Bearbeiten | Quelltext bearbeiten]

Ein regelmäßiges Siebeneck kann nicht mit Zirkel und Lineal exakt konstruiert werden, da es kein konstruierbares Polygon ist.

Für die Praxis gibt es einige ausreichend genaue Näherungskonstruktionen.

Es geht darum, eine Strecke zu erhalten, welche möglichst genau das 0,86776747823-Fache eines gegebenen Radius ist.

Konstruktion nach Dürer

[Bearbeiten | Quelltext bearbeiten]
Konstruktion eines Siebenecks

Eine sehr einfache Näherungskonstruktion, auch bekannt aus Konstruktionen zu regelmäßigen Vielecken von Albrecht Dürer[1], ist in folgender Zeichnung dargestellt:

  1. Vom Mittelpunkt des Umkreises zeichnet man eine Gerade, die den Umkreis im Punkt schneidet.
  2. Dann zeichnet man einen Kreis um , der durch verläuft und den Umkreis in den Punkten und schneidet.
  3. Die Gerade schneidet die Strecke im Halbierungspunkt .
  4. Die rote Strecke ist eine gute Näherung für die Seitenlänge des Siebenecks.
  5. Die Eckpunkte bis erhält man durch Abschlagen der Strecke .

Genau dieselbe Streckenlänge lässt sich folgendermaßen konstruieren:

  1. Konstruiere das dem Umkreis einbeschriebene regelmäßige (gleichseitige) Dreieck.
  2. Die Hälfte einer Dreiecksseite nimm als Näherung für die Seite des Siebenecks.

In dieser Form war sie bereits dem im 10. Jahrhundert in Bagdad wirkenden Gelehrten Abu l-Wafa bekannt.[2]

Aus dem rechtwinkligen Dreieck AHM errechnet sich:

Mit

 ; und

Bei dieser Konstruktion beträgt der relative Fehler

Die mit dieser Konstruktion gewonnene Seitenlänge ist etwas zu kurz und beträgt 99,8 Prozent des wahren Wertes. Oder anders formuliert: Bei einem Umkreisradius von ungefähr 57,4 cm beträgt der Fehler in der Seitenlänge einen Millimeter.

Mittels Koordinatensystem

[Bearbeiten | Quelltext bearbeiten]

Eine etwas aufwendigere, aber genauere Näherungskonstruktion ist in folgender Zeichnung dargestellt:

Alternative Konstruktion eines Siebenecks
  1. In einem rechtwinkeligen Koordinatensystem zeichnet man einen Kreis, der seinen Mittelpunkt im Ursprung hat und genau durch den Punkt mit den Koordinaten verläuft.
  2. Der Schnittpunkt der positiven -Achse mit der Kreislinie wird als Eckpunkt des regelmäßigen Siebenecks festgelegt.
  3. Die Gerade (grüne Linie) schneidet die Kreislinie in unmittelbarer Nähe der Eckpunkte und .
  4. Wenn man die Streckensymmetrale der Strecke mit dem Kreis schneidet, erhält man eine Näherung für den Eckpunkt .
  5. Die rote Strecke oder ist eine sehr gute Näherung für die Seitenlänge des regelmäßigen Siebenecks.
  6. Die Eckpunkte , und erhält man durch Spiegelung oder Abschlagen der Seitenlänge am Umkreis.

Bezeichnet man den Umkreisradius mit , den Abstand der von mit und substituiert , so ergibt sich bei dieser Konstruktion:

(1) ,

und mit den Werten

(2) 

ergibt sich:

(3) 
(4) 
(4a) 

Die mit dieser Konstruktion gewonnene Seitenlänge ist also etwas zu lang, der relative Fehler beträgt näherungsweise 0,00057821133, also 0,0578 Prozent. Oder anders formuliert: Bei einem Umkreisradius von ungefähr 199,3 cm beträgt der Fehler in der Seitenlänge einen Millimeter.

Mittels des gegebenen Radius

[Bearbeiten | Quelltext bearbeiten]

Ein Nachteil der o. g. Konstruktion besteht darin, dass nicht von einem direkt gegebenen Radius ausgegangen wird. Will man vom Radius ausgehen, so besteht die Aufgabe darin, den zum gegebenen Radius gehörenden Abstand zwischen der Gerade und dem Mittelpunkt (das ist die Längeneinheit der Konstruktion mit geg. Koordinatensystem) zu finden.

Zweite Näherungskonstruktion bei gegebenem Umkreisradius
Herleitung des Abstands d

Aus der Konstruktion mit Koordinatensystem und der Zeichnung kann man ablesen:

Damit gilt

Außerdem ist nach dem Satz des Pythagoras noch

Im rechtwinkligen Dreieck MZP gilt nach dem Kathetensatz

und

Der Quotient ist gemäß obiger Darstellung

und damit

wobei p und q die Hypotenusenabschnitte sind. Ihre Längen betragen 4/5 und 1/5 des Radius. Damit lässt sich der Punkt Z konstruieren und somit der Abstand d festlegen.

Konstruktion

Die mit dieser Konstruktion gewonnene Seitenlänge sowie der relative Fehler entsprechen der Konstruktion mit Koordinatensystem. Es gilt deshalb auch: Bei einem Umkreisradius von ungefähr 199,3 cm beträgt der Fehler in der Seitenlänge einen Millimeter.

Exakte Konstruktionen

[Bearbeiten | Quelltext bearbeiten]

Mittels Dreiteilung eines Winkels

[Bearbeiten | Quelltext bearbeiten]
Konstruktion mit Tomahawk (rot)

Nimmt man zu den klassischen (euklidischen) Werkzeugen Zirkel und Lineal noch ein Extrawerkzeug zur Dreiteilung des Winkels, wie z. B. einen Tomahawk, so kann das Siebeneck jedoch exakt – ähnlich dem Dreizehneck – konstruiert werden.[3]

Bei gegebenem Umkreis

[Bearbeiten | Quelltext bearbeiten]

Mithilfe eines markierten Lineals

[Bearbeiten | Quelltext bearbeiten]

Konstruktionen mithilfe einer sogenannten Einschiebung (Neusis),[4] z. B. mit Zirkel und einem markierten Lineal auf dem eine spezielle Markierung als zusätzliche Hilfe aufgebracht ist, auch als Neusis-Konstruktion bezeichnet, wurden bereits von Archimedes z. B. zur Dreiteilung des Winkels und von Abu l-Wafa in der Blütezeit des Islam angewandt.

David Johnson Leisk, meist bekannt als Crockett Johnson, veröffentlichte 1975 eine im englischen Sprachgebrauch bezeichnete Neusis construction[5] eines Siebenecks (Heptagon), bei dem die Seitenlänge gegeben ist. Hierfür verwendete er einen Zirkel und ein Lineal, auf dem eine Markierung bezüglich der Seitenlänge AB angebracht war.[6]

Bei gegebener Seitenlänge

[Bearbeiten | Quelltext bearbeiten]

Siehe hierzu Bild 1 und 2.

 

Bild 1: Reguläres Siebeneck mit gegebener Seitenlänge, Neusis-Konstruktion nach David Johnson Leisk (Crockett Johnson)
Bild 2: Reguläres Siebeneck mit gegebener Seitenlänge,
Neusis-Konstruktion als Animation mit 10 s Pause
Bild 3: Reguläres Siebeneck mit gegebenem Umkreis,
Neusis-Konstruktion mit zentrischer Streckung.

Bei gegebenem Umkreis

[Bearbeiten | Quelltext bearbeiten]

Ist der Umkreis des gesuchten Siebenecks mittels des Radius R – wie im Bild 3 gezeigt – vorgegeben, wird zuerst dessen Mittelpunkt O, mithilfe der Neusis-Konstruktion nach David Johnson Leisk (Beschreibung siehe Bei gegebener Seitenlänge) bestimmt. Hierzu wählt man die Länge b der Strecke AB deutlich kleiner, als die zu erwartende Seitenlänge a des gesuchten Siebenecks.

Nach dem Generieren des Mittelpunktes O, kann mithilfe des gegebenen Radius R der Umkreis eingezeichnet werden. Es bedarf nun nur noch zweier Halbgeraden vom Mittelpunkt O durch den Punkt A bzw. B bis zum Umkreis. Anhand der sogenannten zentrischen Streckung ergibt sich dabei die Strecke A'B' als Seitenlänge a des gesuchten Siebenecks.

Abschließend werden mit der Seitenlänge a die restlichen fünf Eckpunkte des Siebenecks festgelegt und die benachbarten Eckpunkte miteinander verbunden. Somit entsteht das regelmäßige Siebeneck A'B'CDE'FG.

Mithilfe der Sinuskurve

[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Sinus und Kosinus

Siebeneck mithilfe der Sinuskurve

Hung Tao Sheng veröffentlichte im Jahr 1969 eine Methode die zur n-Teilung eines beliebigen Winkels die Sinuskurve verwendet.[7]

Konstruktionsbeschreibung für nebenstehende Darstellung

Regelmäßige überschlagene Siebenecke

[Bearbeiten | Quelltext bearbeiten]

Ein regelmäßiges überschlagenes Siebeneck ergibt sich, wenn beim Verbinden der sieben Eckpunkte jedes Mal mindestens einer übersprungen wird und die somit erzeugten Sehnen gleich lang sind. Notiert werden solche regelmäßigen Sterne mit Schläfli-Symbolen , wobei die Anzahl der Eckpunkte angibt und jeder -te Punkt verbunden wird.

In der folgenden Galerie sind die zwei möglichen regelmäßigen Siebenstrahlsterne, auch Heptagramme genannt, dargestellt.

Vorkommen

[Bearbeiten | Quelltext bearbeiten]

Architektur

[Bearbeiten | Quelltext bearbeiten]

In der Architektur findet das Siebeneck selten Verwendung – z. B. im Grundriss der mittelalterlichen Kirche Notre-Dame de l’Assomption (12. Jhdt.) im südfranzösischen Ort Rieux-Minervois. Der Konzertsaal „Hegelsaal“ im Kultur- und Kongresszentrum Liederhalle in Stuttgart hat ebenso wie seine Glaskuppel einen Grundriss in Form eines regelmäßigen Siebenecks.

Weitere Beispiele sind der Glockenturm der Kirche Maria am Gestade in Wien, das Schiff der Dorfkirche Ketzür, die Afrikakapelle bei Tholey, das Baptisterium zur Heiligen Dreifaltigkeit im kroatischen Rovinj (12. Jhdt.), die Herz-Jesu-Kirche (Ingolstadt) oder das Kriegerdenkmal bei Thalfang/Hunsrück.

Biologie

[Bearbeiten | Quelltext bearbeiten]

Der Siebenstern (Trientalis europaea) zeigt eine siebenstrahlige Blüte:

Sonstiges

[Bearbeiten | Quelltext bearbeiten]

Siehe auch

[Bearbeiten | Quelltext bearbeiten]
[Bearbeiten | Quelltext bearbeiten]
Commons: Regelmäßige Siebenecke – Sammlung von Bildern
Wiktionary: Siebeneck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks: Siebeneck – Lern- und Lehrmaterialien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Helmuth Gericke: Mathematik im Abendland. Von den römischen Feldmessern bis zu Descartes. Springer, Berlin/Heidelberg/New York 1990, ISBN 3-642-74793-0, 3.1.2.2. Albrecht Dürer: Vnterweysung der messung, S. 190–191, Seite des Siebenecks, Abb. 3.26., doi:10.1007/978-3-642-74793-9, urn:nbn:de:1111-20111119809 (Vorschau in der Google-Buchsuche [abgerufen am 18. Mai 2019] Weiteres im Inhaltsverzeichnis S. 351).
  2. Christoph J. Scriba, Peter Schreiber: 5000 Jahre Geometrie. Geschichte, Kulturen, Menschen. 2. Auflage. Springer, Berlin/Heidelberg/New York 2005, ISBN 3-540-22471-8.
  3. Andrew Gleason: Angle Trisection, the Heptagon, and the Triskaidecagon. (Memento vom 26. November 2022 im Internet Archive; PDF) In: The American Mathematical Monthly, Vol. 95, No. 3. (Mar., 1988), S. 185–194 (JSTOR:2323624)
  4. Klaus Volkert: Geschichte der geometrischen Konstruktionsprobleme I. (PDF; 1,5 MB) Vorlesung, Universität zu Köln im WS 06/07. In: math.uni-wuppertal.de. Universität Wuppertal, 2006, S. 20, abgerufen am 15. September 2018.
  5. Eric W. Weisstein: Neusis Construction. In: mathworld.wolfram.com, MathWorld, A Wolfram Web Resource, abgerufen am 18. Mai 2019.
  6. Eric W. Weisstein: Regular Heptagon. In: mathworld.wolfram.com, MathWorld, A Wolfram Web Resource, abgerufen am 18. Mai 2019.
  7. Hung Tao Sheng: A Method of Trisection of an Angle and X-Section of an Angle. 4. Xsection of an angle, X = 7. In: Mathematics Magazine. 42 No. 2. Taylor & Francis, März 1969, S. 79, JSTOR:2689193 (englisch).
  8. [LE] = Längeneinheit
  9. E. Albertazzi, C. Domene, P. W. Fowler, T. Heine, G. Seifert, C. Van Alsenoy, F. Zerbetto: Pentagon adjacency as a determinant of fullerene stability. In: Physical Chemistry Chemical Physics. 1999, 12, S. 2913–2918, doi:10.1039/A901600G (PDF; mit Registrierung).