Eine mathematische Struktur ist eine Menge mit bestimmten Eigenschaften. Diese Eigenschaften ergeben sich durch eine oder mehrere Relationen zwischen den Elementen (Struktur erster Stufe) oder den Teilmengen der Menge (Struktur zweiter Stufe).[1] Diese Relationen und damit auch die Struktur, die sie definieren, können von sehr verschiedener Art sein. Eine solche Art lässt sich durch gewisse Axiome festlegen, die die definierenden Relationen zu erfüllen haben. Die wichtigsten großen Typen, in die sich Strukturen klassifizieren lassen, sind algebraische Strukturen, relationale Strukturen wie insbesondere Ordnungsstrukturen, sowie topologische Strukturen.[2] Viele wichtige Mengen besitzen sogar mehrfache Strukturen, das heißt Mischstrukturen aus diesen Grundstrukturen.[3] Zum Beispiel haben Zahlbereiche sowohl eine algebraische, eine Ordnungs- als auch eine topologische Struktur, die miteinander verbunden sind. Daneben gibt es auch noch geometrische Strukturen.

Algebraische Strukturen

Eine algebraische Struktur oder kurz eine (allgemeine) Algebra ist eine Struktur (erster Stufe), die nur durch eine oder mehrere Verknüpfungen definiert ist (als Funktionen sind Verknüpfungen spezielle Relationen).

Strukturen mit einer inneren Verknüpfung: Gruppen und ähnliche

Eine hierarchische Zusammenstellung der grundlegenden algebraischen Strukturen

Die fundamentalen algebraischen Strukturen besitzen eine oder zwei zweistellige innere Verknüpfungen. Die Taxonomie, also die Klassifizierung dieser Strukturen, richtet sich danach, welche der folgenden Gruppenaxiome in der Menge bezüglich der Verknüpfung gelten:

(E) Existenz und Eindeutigkeit (auch Abgeschlossenheit):
(A) Assoziativgesetz:
(N) Existenz eines neutralen Elements:
(I) Existenz eines inversen Elements:
(K) Kommutativgesetz:
(Ip) Idempotenzgesetz:

Die folgenden Strukturen mit einer zweistelligen inneren Verknüpfung verallgemeinern oder spezialisieren den fundamentalen Begriff der Gruppe:

Name Axiome Beschreibung
Gruppoid (auch Magma) E Eine Menge mit zweistelliger innerer Verknüpfung.
Halbgruppe EA Ein Gruppoid mit Assoziativgesetz. Beispiel: .
Halbverband EAKIp Eine Halbgruppe mit Kommutativgesetz und Idempotenzgesetz. Beispiel:
Monoid EAN Eine Halbgruppe mit einem neutralen Element . Beispiel: mit .
Loop mit Inverseneigenschaft ENI Ein Gruppoid mit neutralem Element, in dem es zu jedem Element ein (eindeutiges) Inverses gibt.
Gruppe EANI Gleichzeitig ein Monoid und eine Quasigruppe. Gruppen wurden Anfang des 19. Jahrhunderts zur Beschreibung von Symmetrien eingeführt und haben sich als fundamental für den gesamten Aufbau der Algebra erwiesen. Beispiele für Zahlbereiche, die eine Gruppe bilden: , . Beispiele für Transformationsgruppen, die Symmetrien beschreiben: die Punktgruppen zur Beschreibung von Molekülsymmetrien, die symmetrischen Gruppen zur Beschreibung von Permutationen, die Lie-Gruppen zur Beschreibung kontinuierlicher Symmetrien.
Abelsche Gruppe EANIK Eine Gruppe mit kommutativer Verknüpfung.

Strukturen mit zwei inneren Verknüpfungen

Ringe, Körper und ähnliche

Die folgenden Strukturen haben zwei innere Verknüpfungen, die gewöhnlich als Addition und Multiplikation geschrieben werden; diese Strukturen sind von den Zahlbereichen (wie , , ) abstrahiert, mit denen man gewöhnlich rechnet. Die Verträglichkeit der multiplikativen mit der additiven Verknüpfung wird durch folgende Axiome sichergestellt:

(Dl) Links-Distributivgesetz: .
(Dr) Rechts-Distributivgesetz: .
(D) Distributivgesetz: es gelten Dl und Dr.

Weitere Axiome, die beide Verknüpfungen betreffen, sind:

(U) Die neutralen Elemente bezüglich der Addition und der Multiplikation, und , sind nicht gleich.
(T) Nullteilerfreiheit: Wenn das neutrale Element der additiven Verknüpfung bezeichnet, dann folgt aus für alle aus , dass oder gilt.
(I*) Für jedes Element, mit Ausnahme des neutralen Elements der additiven Verknüpfung, existiert das inverse Element bezüglich der multiplikativen Verknüpfung. Formal: .

Die jeweils gültigen Axiome sind im Folgenden in der Reihenfolge (additive Axiome | multiplikative Axiome | gemischte Axiome) gekennzeichnet.

Wichtige Teilmengen sind:

Verbände, Mengenalgebren und ähnliche

Ein Verband ist eine algebraische Struktur, deren zwei innere Verknüpfungen im allgemeinen Fall nicht als Addition und Multiplikation aufgefasst werden können:

(V) Verschmelzungsgesetze (auch Absorptionsgesetze genannt): und .

Mit diesem Axiom erhalten wir als Strukturen:

In einem distributiven Verband muss man nur eines der beiden Verschmelzungsgesetze fordern; das andere folgt dann aus dem Distributivgesetz.

Eine Boolesche Algebra ist ein Verband, in dem die beiden Verknüpfungen je ein neutrales Element haben, und , und in dem jedes Element ein bezüglich beider Verknüpfungen übereinstimmendes Komplement hat,

(C) Existenz eines Komplements: zu jedem gibt es ein , für das gilt und .

Beachte, dass das Komplement nicht inverses Element ist, da es das neutrale Element der jeweils anderen Verknüpfung liefert.

Strukturen mit innerer und äußerer Verknüpfung: Vektorräume und ähnliche

Diese Strukturen bestehen aus einem additiv geschriebenen Magma (zumeist einer abelschen Gruppe) und einem Zahlbereich (einer Struktur mit zwei inneren Verknüpfungen, zumeist einem Körper) , dessen Gruppenaktion auf als Linksmultiplikation oder als Rechtsmultiplikation geschrieben und (von aus gesehen) als äußere Verknüpfung aufgefasst wird. Die Elemente von heißen Skalare, die äußere Verknüpfung dementsprechend auch Skalarmultiplikation. Sie genügt den folgenden Verträglichkeitsaxiomen (in Notation für Linksmultiplikation):

(AL) Assoziativgesetz: für aus und aus gilt .
(DL) Distributivgesetze: für aus und aus gilt und .

Damit erhalten wir folgende Strukturen in der Notation ( | | Verträglichkeitsaxiome):

Zusätzliche algebraische Struktur auf Vektorräumen

Beziehungen zwischen mathematischen Räumen

Die im Folgenden eingeführten inneren Verknüpfungen Skalarprodukt und Norm verhelfen einem Vektorraum (das kann insbesondere auch ein als Vektorraum aufzufassender Körper sein) zu einer topologischen Struktur.

Vektorraum mit allgemein + Vollständigkeit
Metrik metrischer Raum vollständiger Raum
Norm normierter Raum Banachraum
Skalarprodukt Prähilbertraum (Innenproduktraum) Hilbertraum

Nach unten und nach rechts nimmt die Spezialisierung der Vektorräume zu. Die in der Tabelle unten stehenden Vektorräume weisen die Eigenschaften der darüberstehenden auf, da ein Skalarprodukt eine Norm induziert und eine Norm einen Abstand .

Ordnungsstrukturen

Eine Ordnungsstruktur ist eine Struktur (erster Stufe), die mit einer Ordnungsrelation ausgestattet ist, d. h., sie ist eine relationale Struktur oder kurz ein Relativ.[4]

Topologische Strukturen

Der geometrische Begriff des Abstands (der Metrik) ermöglicht es, in metrischen Räumen das grundlegende Konzept der modernen Analysis, die Konvergenz, zu handhaben. Topologische Räume sind aus dem Bemühen hervorgegangen, die Konvergenz in einem allgemeinen Sinne zu behandeln (jeder metrische Raum ist ein topologischer Raum mit der Topologie, die durch die Metrik induziert wird). Die verschiedenen topologischen Räume, sie lassen sich durch ihre möglichen lokalen Strukturen klassifizieren, erhalten ihre Struktur durch die Auszeichnung bestimmter Teilmengen als offen oder, äquivalent dazu, als abgeschlossen (Strukturen zweiter Stufe).

Geometrische Strukturen

Eine geometrische Struktur kommt durch Eigenschaften wie der Kongruenz von Figuren zum Ausdruck. Ihre Klassifikation nach den gültigen Axiomen (vergleiche die Artikel Geometrie, Euklidische Geometrie, Euklids Elemente):

Ihre Klassifikation nach den Transformationsgruppen, unter denen bestimmte geometrische Eigenschaften invariant bleiben (Felix Klein, Erlanger Programm):

Zahlbereiche

Zahlbereiche sind die Mengen, mit denen man gewöhnlich rechnet. Grundlage ist die Menge der natürlichen Zahlen. Als algebraische Verknüpfung dienen Addition und Multiplikation. Indem man fordert, dass auch die Umkehroperationen Subtraktion und Division stets möglich sein sollen, erweitert man die Menge der natürlichen Zahlen zur Menge der ganzen Zahlen und zur Menge aller Brüche. Die reellen Zahlen werden als Grenzwerte von Zahlenfolgen eingeführt; sie ermöglichen (unter anderem) das Wurzelziehen aus beliebigen positiven Zahlen. Die Wurzeln aus negativen Zahlen führen auf die komplexen Zahlen.

Wichtig sind ferner einige eingeschränkte Zahlbereiche:

Literatur

Einzelnachweise

  1. Nicolas Bourbaki: Die Architektur der Mathematik I. S. 165 f.
  2. Nicolas Bourbaki: Die Architektur der Mathematik II. S. 212–214.
  3. Nicolas Bourbaki: Die Architektur der Mathematik II. S. 215.
  4. Eng verwandt mit dem Begriff der relationalen Struktur ist der des Graphen im graphentheoretischen Sinn. Die Trägermenge wird dort als Knotenmenge bezeichnet, die Stelle der Relation nimmt die Kantenmenge ein. Graphen sind, wenn nicht anders gesagt, finit.