Verschiedene kohlige Chondrite. Von links nach rechts: Allende (CV), Tagish Lake (CI), Murchison (CM)

Die kohligen Chondrite stellen eine besondere Form der Steinmeteorite bzw. der Chondrite dar.[1] Sie machen etwa 2–3 % der bisher gefundenen Meteoriten aus.[2]

Sie enthalten einen hohen Anteil an Kohlenstoff (bis zu 3 %), der in Form von Graphit, Karbonaten und organischen Verbindungen, darunter Aminosäuren, vorliegt.[3] Darüber hinaus enthalten sie Wasser und Minerale, die durch den Einfluss von Wasser verändert wurden. Die kohligen Chondriten waren keinen höheren Temperaturen ausgesetzt, so dass sie kaum durch thermische Prozesse verändert wurden. Einige kohlige Chondrite, wie der Allende-Meteorit, enthalten Calcium-Aluminium-reiche Einschlüsse (CAIs). Es handelt sich dabei um Verbindungen, die früh aus dem solaren Urnebel auskondensierten und die ältesten im Sonnensystem entstandenen Minerale darstellen dürften.

Manche primitive kohlige Chondrite, wie etwa der CM-Chondrit Murchison, enthalten präsolare Minerale, darunter Siliziumkarbid und winzige nur nanometergroße Diamanten, die offensichtlich nicht in unserem Sonnensystem gebildet wurden. Diese präsolaren Minerale wurden vermutlich bei der Explosion einer nahen Supernova oder in der Umgebung eines pulsierenden Roten Riesen (genauer: eines sogenannten AGB-Sterns) gebildet, bevor sie in die Materiewolke gelangten, aus welcher sich unser Sonnensystem bildete. Bei derartigen Sternexplosionen werden Druckwellen freigesetzt, die Materiewolken in ihrer Umgebung verdichten können, was zur Bildung neuer Sterne und Sonnensysteme führen kann.[2]

Ein weiterer kohliger Chondrit, der Flensburg-Meteorit (2019), lieferte den Nachweis für das bis dato früheste bekannte Vorkommen von flüssigem Wasser im jungen Sonnensystem.[4]

Einteilung

[Bearbeiten | Quelltext bearbeiten]

Anhand ihrer chemischen Zusammensetzung werden die kohligen Chondrite in die Gruppen CI, CB, CM, CV, CO, CR, CK, CH und CL eingeteilt.[5][6]

NWA 3118,[7] kohliger Chondrit, CV3
Splitter „Matterhorn“ vom Kohligen Chondrit HaH 280;[8] CK4

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. a b c BÜHLER: Meteorite Urmaterie aus dem interplanetaren Raum. Springer-Verlag, 2013, ISBN 978-3-0348-6667-5, S. 130 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. a b Horst Rauchfuss: Chemische Evolution und der Ursprung des Lebens. Springer-Verlag, 2006, ISBN 978-3-540-27666-1, S. 83 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Gregor Markl: Minerale und Gesteine Mineralogie – Petrologie – Geochemie. Springer-Verlag, 2014, ISBN 978-3-662-44628-7, S. 420 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Martin Vieweg: Uralte Karbonate zeugen von Wasser, auf: wissenschaft.de vom 22. Januar 2021.
    Älteste Karbonate im Sonnensystem. Auf: EurekAlert! vom 20. Januar 2021
  5. Robert Hutchison: Meteorites A Petrologic, Chemical and Isotopic Synthesis. Cambridge University Press, 2006, ISBN 978-0-521-03539-2, S. 42 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. a b Knut Metzler u. a.: The Loongana (CL) group of carbonaceous chondrites. In: Geochimica et Cosmochimica Acta. Nr. 304, 21. Juli 2021, S. 1–31.
  7. Northwest Africa 3118 (NWA 3118). Meteoritical Bulletin Database, The Meteorological Society (MetSoc), Lunar And Planetary Institute (LPI), Stand: 18. Januar 2024.
  8. Hammadah al Hamra 280 (HaH 280). Meteoritical Bulletin Database, The Meteorological Society (MetSoc), Lunar And Planetary Institute (LPI), Stand: 18. Januar 2024.