Minima und Maxima der Funktion cos(3πx)/x im Bereich 0.1≤ x ≤1.1

In der Mathematik ist Extremwert (oder Extremum; Plural: Extrema) der Oberbegriff für ein lokales oder globales Maximum oder Minimum. Ein lokales Maximum bzw. lokales Minimum ist der Wert der Funktion an einer Stelle , wenn die Funktion in einer hinreichend kleinen Umgebung keine größeren bzw. kleineren Werte annimmt; die zugehörige Stelle wird lokaler Maximierer bzw. lokaler Minimierer, Maximalstelle bzw. Minimalstelle oder zusammenfassend auch Extremstelle genannt, die Kombination aus Stelle und Wert Extrempunkt oder je nach Art des Extremums Hoch- bzw. Tiefpunkt. Umgangssprachlich wird ein Hochpunkt auch als Gipfel bezeichnet.

Ein globales Maximum wird auch absolutes Maximum genannt, für ein lokales Maximum wird auch der Begriff relatives Maximum gebraucht. Lokale und globale Minima sind analog definiert.

Die Lösung einer Extremwertaufgabe, für eine einfache Darstellung siehe Kurvendiskussion, nennt man die extremale Lösung.

Eindimensionaler Fall

[Bearbeiten | Quelltext bearbeiten]

Formale Definitionen

[Bearbeiten | Quelltext bearbeiten]

Es sei eine Teilmenge der reellen Zahlen (z. B. ein Intervall) und eine Funktion.

hat an der Stelle

Gibt es eine Umgebung von , in der für alle sogar die strenge Ungleichung (bzw. ) gilt, so spricht man von einem strengen[2] oder isolierten[3] lokalen Minimum (bzw. Maximum).

Besitzt die Funktion an der Stelle ein strenges lokales Maximum, so nennt man den Punkt Hochpunkt, hat sie dort ein strenges lokales Minimum, so heißt der Punkt Tiefpunkt. Liegt ein Hoch- oder ein Tiefpunkt vor, so spricht man allgemein von einem Extrempunkt.[4]

Existenz von Extrema

[Bearbeiten | Quelltext bearbeiten]

Jede stetige Funktion auf einem kompakten Intervall nimmt ein globales Maximum und ein globales Minimum an.[A 1] Dieser Satz vom Minimum und Maximum folgt aus dem Satz von Heine-Borel, wird aber oft auch nach Karl Weierstraß oder Bernard Bolzano benannt. Es handelt sich um eine reine Existenzaussage, die keine Informationen darüber liefert, wie die Extrema ggf. aufgefunden werden können.

Bestimmung von Extremstellen differenzierbarer Funktionen

[Bearbeiten | Quelltext bearbeiten]

Ist eine differenzierbare Funktion auf einer offenen Menge , so lässt sie sich mithilfe der Differentialrechnung auf Extremstellen untersuchen.

Notwendiges Kriterium

[Bearbeiten | Quelltext bearbeiten]

Hat an einer Stelle ein lokales Extremum und ist dort differenzierbar, so ist dort die erste Ableitung gleich null:[2]

.

Neben lokalen Extrema erfüllen auch Sattelpunkte dieses Kriterium.[A 2] Ein klassisches Beispiel ist die Funktion , deren Ableitung im Punkt verschwindet, ohne dass die Funktion dort ein lokales Extremum hat. Zum Nachweis der Extrempunkteigenschaft bedarf es deshalb eines hinreichenden Kriteriums oder weiterer Überlegungen.

Hinreichende Kriterien

[Bearbeiten | Quelltext bearbeiten]
so folgt:
(1) Ist gerade sowie (bzw. ), so hat bei ein strenges lokales Maximum (bzw. Minimum).
(2) Ist hingegen ungerade, so ist bei streng monoton steigend oder fallend (hat also dort einen Sattelpunkt).[7]

Es gibt allerdings auch Funktionen, bei denen keines der oben genannten Kriterien weiterhilft (siehe das letzte Beispiel).

Beispiele

[Bearbeiten | Quelltext bearbeiten]

Anwendungsbeispiel

[Bearbeiten | Quelltext bearbeiten]

In der Praxis können Extremwert-Berechnungen zur Lösung von Optimierungsproblemen verwendet werden, wie das folgende Beispiel zeigt:

Lösungsweg:

Wird die Länge des Rechtecks mit bezeichnet und seine Breite mit (), so lautet die Formel für die zu maximierende Rechtecksfläche (Zielfunktion). Durch Umstellen der Umfangsformel erhält man . Einsetzen in die Flächenformel eliminiert die Variable in der Zielfunktion:

.

Die notwendige Bedingung liefert Kandidaten für ein lokales Maximum. Dazu bildet man die erste Ableitung

und setzt sie gleich null:

.

Hieraus erhält man durch elementare Umformungen als einzigen Kandidaten .

Die zweite Ableitung lautet

.

Sie ist für jedes negativ, also insbesondere für . Somit liegt dort ein lokales Maximum vor, das zugleich das globale Maximum ist (da der einzige Kandidat für ein lokales Maximum ist). Durch Einsetzen der Maximalstelle in erhält man auch . Also ist der größtmögliche Flächeninhalt eines Rechtecks bei vorgegebenen Umfang dann zu erzielen, wenn beide Seitenlängen gleich sind (was einem Quadrat entspricht). Umgekehrt lässt sich aber auch sagen, dass ein Rechteck mit vorgegebenem Flächeninhalt den geringsten Umfang aufweist, wenn seine Länge und sein Höhe im Verhältnis zueinander stehen, d. h. wenn das Rechteck ein Quadrat ist.

Mehrdimensionaler Fall

[Bearbeiten | Quelltext bearbeiten]

Es seien und eine Funktion. Weiterhin sei . Ein lokales Minimum/Maximum in ist dann gegeben, wenn eine Umgebung von existiert, in welcher kein Punkt einen kleineren bzw. größeren Funktionswert annimmt.

Analog zum eindimensionalen Fall ist das Verschwinden des Gradienten

eine notwendige Bedingung dafür, dass in einem Punkt im Inneren von ein Extremum annimmt. Hinreichend ist in diesem Fall die Definitheit der Hesse-Matrix : Ist sie positiv definit, liegt ein lokales Minimum vor; ist sie negativ definit, handelt es sich um ein lokales Maximum; ist sie indefinit, liegt kein Extrempunkt, sondern ein Sattelpunkt vor. Wenn sie nur semidefinit ist, ist keine Entscheidung anhand der Hesse-Matrix möglich (siehe peanosche Fläche).

Unendlichdimensionaler Fall

[Bearbeiten | Quelltext bearbeiten]

Definition

[Bearbeiten | Quelltext bearbeiten]

Der Begriff des Maximums und des Minimums überträgt sich direkt auf den unendlichdimensionalen Fall. Seien ein Vektorraum und eine Teilmenge dieses Vektorraumes sowie ein Funktional. Dann hat an der Stelle

Der Zusatz „globales“ wird meist weggelassen, wenn aus dem Zusammenhang klar ist, was gemeint ist. Ist zusätzlich mit einer Topologie versehen, also ein topologischer Raum, dann hat an der Stelle

Ein Punkt heißt ein (lokales) Extremum, wenn er ein (lokales) Minimum oder ein (lokales) Maximum ist. Jedes globale Minimum (Maximum) ist ein lokales Minimum (Maximum).

Existenz, Eindeutigkeit und Geometrie von Extrema

[Bearbeiten | Quelltext bearbeiten]

Existenz

[Bearbeiten | Quelltext bearbeiten]

Entsprechend den Existenzaussagen für reelle Funktionen gibt es auch Aussagen für die Existenz von Extremalstellen von Funktionalen. Ist ein normierter Raum, so gilt:

Da diese Version für die Anwendung und Überprüfung oft unpraktisch ist, schwächt man dies ab zu der Aussage, dass jedes stetige quasikonvexe Funktional auf einer beschränkten, konvexen und abgeschlossenen Teilmenge eines reflexiven Banachraums ein Minimum annimmt. Diese Aussage gilt auch für alle konvexen Funktionale, da diese immer quasikonvex sind. Im Endlichdimensionalen kann auf die Konvexität der Teilmenge verzichtet werden.

Eindeutigkeit

[Bearbeiten | Quelltext bearbeiten]

Unter gewissen Umständen sind die Optimalpunkte sogar eindeutig bestimmt. Dazu gehört zum Beispiel die strikte Konvexität.

Geometrie

[Bearbeiten | Quelltext bearbeiten]

Schränkt man sich auf gewisse Klassen von Funktionalen ein, so kann man Aussagen über die Geometrie der Menge der Extremalpunkte treffen.

Andere Extremwerte

[Bearbeiten | Quelltext bearbeiten]

Diskrete Optimierung

[Bearbeiten | Quelltext bearbeiten]

Bei diskreten Optimierungsproblemen ist der oben definierte Begriff des lokalen Extremums nicht geeignet, da in jedem Punkt ein lokales Extremum in diesem Sinne vorliegt. Für Extrema einer Funktion wird daher ein anderer Umgebungsbegriff verwendet: Man benutzt eine Nachbarschaftsfunktion , die jedem Punkt die Menge seiner Nachbarn zuordnet,

dabei steht für die Potenzmenge von .

hat dann ein lokales Maximum in einem Punkt , wenn für alle Nachbarn gilt. Lokale Minima sind analog definiert.

Variationsrechnung

[Bearbeiten | Quelltext bearbeiten]

Extremwerte von Funktionen, deren Argumente selbst Funktionen sind, z. B. die Kontur eines Regentropfens mit minimalem Luftwiderstand, sind Gegenstand der Variationsrechnung.

Anmerkungen

[Bearbeiten | Quelltext bearbeiten]
  1. Dabei können die Extremstellen auch in den Randpunkte des Intervalls liegen. In diesem Fall spricht man auch von einem Randminimum bzw. Randmaximum.
  2. Eine Stelle , an denen die Bedingung erfüllt ist, heißt kritischer Punkt oder stationärer Punkt. Kritische Punkte sind mögliche Kandidaten für Extremstellen. Mithilfe der hinreichenden Kriterien identifiziert man unter den kritischen Punkten diejenigen, die tatsächlich Extremstellen sind.

Siehe auch

[Bearbeiten | Quelltext bearbeiten]
[Bearbeiten | Quelltext bearbeiten]
Wiktionary: Extremwert – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Literatur

[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Herbert Amann, Joachim Escher: Analysis I. 3. Auflage. Birkhäuser Verlag, Basel 2006, ISBN 3-7643-7755-0, S. 333.
  2. a b Otto Forster, Florian Lindemann: Analysis 1. 13. Auflage. S. 247.
  3. Vladimir A. Zorich: Analysis I. S. 223.
  4. Andreas Büchter, Hans-Wolfgang Henn: Elementare Analysis. Spektrum Akademischer Verlag, Heidelberg 2010, ISBN 978-3-8274-2091-6, S. 254.
  5. Otto Forster, Florian Lindemann: Analysis 1. 13. Auflage. S. 254.
  6. Theodor Bröcker: Analysis 1. S. 98.
  7. Theodor Bröcker: Analysis 1. S. 99.
  8. Konrad Königsberger: Analysis 1. 6. Auflage. Springer, Berlin / Heidelberg 2004, ISBN 978-3-540-40371-5, S. 146.
  9. Vladimir A. Zorich: Analysis 1. S. 248.