Der Begriff des Divisors spielt in der algebraischen Geometrie und der komplexen Analysis eine wichtige Rolle bei der Untersuchung algebraischer Varietäten bzw. komplexer Mannigfaltigkeiten und der darauf definierten Funktionen. Unterschieden werden müssen dabei der Weil-Divisor und der Cartier-Divisor, welche in bestimmten Fällen übereinstimmen.

Ursprünglich kommt dem Divisor im eindimensionalen Fall die Bedeutung zu, die Null- und Polstellenmenge einer rationalen bzw. meromorphen Funktion vorzuschreiben, und es stellt sich die Frage, für welche Divisoren eine solche Realisierung möglich ist, was eng mit der Geometrie der Varietät bzw. Mannigfaltigkeit verknüpft ist.

Eindimensionaler Fall

[Bearbeiten | Quelltext bearbeiten]

Funktionentheorie

[Bearbeiten | Quelltext bearbeiten]

Definition

[Bearbeiten | Quelltext bearbeiten]

Sei ein Gebiet oder eine riemannsche Fläche. Eine Abbildung heißt Divisor in , falls ihr Träger in abgeschlossen und diskret ist. Die Menge aller Divisoren auf bildet bezüglich der Addition eine abelsche Gruppe, die mit bezeichnet wird. Auf dieser Gruppe führt man eine partielle Ordnung ein. Seien , dann setzt man , falls für alle gilt.

Hauptdivisor

[Bearbeiten | Quelltext bearbeiten]

Zu jeder von Null verschiedenen meromorphen Funktion kann ein Divisor definiert werden, indem der Divisor jedem Punkt aus die Null- beziehungsweise die Polstellenordnung zuordnet:

Ein Divisor, der gleich dem Divisor einer meromorphen Funktion ist, heißt Hauptdivisor.

Der weierstraßsche Produktsatz besagt, dass in jeder Divisor ein Hauptdivisor ist. In einer kompakten, riemannschen Fläche gilt dies jedoch nicht mehr und ist vom Geschlecht der Fläche abhängig. Dies wird im Artikel Satz von Riemann-Roch näher erläutert.

Algebraische Kurven

[Bearbeiten | Quelltext bearbeiten]

Sei eine ebene algebraische Kurve. Eine formale Summe heißt Divisor in , falls außer für endlich viele . Durch punktweise Addition wird die Menge aller Divisoren in zu einer freien abelschen Gruppe.

Analog zur o. g. Definition definiert man für eine rationale Funktion den Divisor der Funktion. Ein Divisor, der gleich dem Divisor einer rationalen Funktion ist, heißt Hauptdivisor.

Im Falle ist für einen Divisor die Abbildung ein Divisor im Sinne der Funktionentheorie. Allerdings gibt es Divisoren im Sinne der Funktionentheorie, die nicht auf diese Weise entstehen, da dort für unendlich viele (die allerdings keinen Häufungspunkt haben dürfen) zugelassen ist.

Allgemeine Definition

[Bearbeiten | Quelltext bearbeiten]

Weil-Divisor

[Bearbeiten | Quelltext bearbeiten]

Sei ein noethersches integres separiertes Schema, regulär in Kodimension 1. Ein Primdivisor in ist ein abgeschlossenes ganzes Unter-Schema der Kodimension Eins. Ein Weil-Divisor (nach André Weil) ist dann ein Element der frei erzeugten abelschen Gruppe der Primdivisoren und wird meistens als formale Summe geschrieben, wobei nur endlich viele von Null verschieden sind.

Cartier-Divisor

[Bearbeiten | Quelltext bearbeiten]

Sei eine komplexe Mannigfaltigkeit bzw. eine algebraische Varietät und bezeichne die Garbe der holomorphen bzw. algebraischen Funktionen auf und bezeichne die Garbe der meromorphen bzw. rationalen Funktionen auf . Die Quotienten-Garbe heißt Garbe der Divisoren, und ein Schnitt in heißt Cartier-Divisor (nach Pierre Cartier), meist nur als Divisor bezeichnet. Die Menge aller Schnitte bildet eine abelsche Gruppe.

Beziehung zwischen Cartier- und Weil-Divisoren

[Bearbeiten | Quelltext bearbeiten]

Sei ein noethersches integres separiertes Schema, dessen lokale Ringe alle faktoriell sind. Dann ist die Gruppe der Weil-Divisoren auf isomorph zur Gruppe der Cartier-Divisoren . Dieser Isomorphismus erhält die Eigenschaft, Hauptdivisor zu sein und führt die Quotientengruppen und ineinander über.

[Bearbeiten | Quelltext bearbeiten]
Wiktionary: Divisor – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Literatur

[Bearbeiten | Quelltext bearbeiten]